Please wait a minute...
 
材料工程  2015, Vol. 43 Issue (6): 21-25    DOI: 10.11868/j.issn.1001-4381.2015.06.004
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
搅拌摩擦加工铝基复合材料的高温摩擦磨损性能
李敬勇, 刘涛, 郭宇文
江苏科技大学 先进焊接技术省级重点实验室, 江苏 镇江 212003
High-temperature Friction and Wear Properties of Friction Stir Processed Aluminum Matrix Composites
LI Jing-yong, LIU Tao, GUO Yu-wen
Advanced Welding Technology Provincial Key Laboratory, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China
全文: PDF(2412 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 通过在铝合金表面一定深度添加颗粒度为10μm的B4C粉末,采用搅拌摩擦加工方法制备成铝基复合材料。采用SEM、EDS、高温摩擦磨损试验机对其摩擦磨损性能进行研究;分析加工方法和环境温度对摩擦因数和磨痕形貌的影响,并探讨磨损机制。结果表明:高温磨损条件下,搅拌摩擦加工制备的铝基复合材料能明显改善铸态ZL109铝合金的耐磨性;复合材料表现出较好的磨损性能和较低的摩擦磨损因数。搅拌摩擦加工制备的铝基复合材料在100℃时磨损以氧化磨损和磨粒磨损为主,随着温度的升高,300℃时复合材料的磨损机理由氧化磨损转变为黏着磨损。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李敬勇
刘涛
郭宇文
关键词 搅拌摩擦加工铝基复合材料磨损性能    
Abstract:Commercial B4C powders (~10μm) were added at a definite depth in the aluminum surface to produce B4C reinforced aluminum matrix composites by friction stir processing (FSP). SEM, EDS, high temperature friction and wear testing machine were used to study the friction and wear properties.The influence of processing method and the environmental temperature on the friction coefficient and wear scar morphologies were analyzed and wear mechanism was discussed.The results show that aluminum matrix composites produced by FSP can significantly improve the wear resistance of as-cast ZL109 Al alloy under high-temperature wear conditions. The composite exhibits better wear resistance and lower friction and wear coefficient. At 100℃, the main wear of the FSPed composite is oxidation and abrasive wear. As the temperature increases to 300℃, the main wear changes from oxidation wear to adhesive wear.
Key wordsfriction stir processing    aluminum matrix composite    wear property
收稿日期: 2014-03-29     
1:  U671.83  
基金资助:江苏高校优势学科建设工程资助(PDAD)
通讯作者: 李敬勇(1963—),男,博士,教授,研究方向为新材料、有色金属及异种金属连接技术研究,新型焊接技术,联系地址:江苏省镇江市梦溪路2号,江苏科技大学材料科学与工程学院(212003),E-mail:jingyong_li@126.com     E-mail: jingyong_li@126.com
引用本文:   
李敬勇, 刘涛, 郭宇文. 搅拌摩擦加工铝基复合材料的高温摩擦磨损性能[J]. 材料工程, 2015, 43(6): 21-25.
LI Jing-yong, LIU Tao, GUO Yu-wen. High-temperature Friction and Wear Properties of Friction Stir Processed Aluminum Matrix Composites. Journal of Materials Engineering, 2015, 43(6): 21-25.
链接本文:  
http://jme.biam.ac.cn/jme/CN/10.11868/j.issn.1001-4381.2015.06.004      或      http://jme.biam.ac.cn/jme/CN/Y2015/V43/I6/21
[1] 赵玉涛, 戴起勋, 陈刚. 金属基复合材料[M]. 北京:机械工业出版社,2007.6ZHAO Y T, DAI Q X, CHEN G. Metal Matrix Composite [M]. Beijing: China Machine Press, 2007.
[2] MISHRA R S, MAHONEY M W, MCFADDEN S X, et al. High strain rate superplasticity in a friction stir processed 7075 Al alloy [J]. Scripta Materialia, 1999, 42(2):163-168.
[3] MISHRA R S, MUKHERJEE A K. An analysis of the role of grain size on superplasticity of γ titanium aluminides [J]. Journal of Materials Science, 2000, 35(1):147-151.
[4] 刘峰超, 马宗义. 搅拌摩擦加工对铸态 7075 铝合金显微组织的影响[J]. 金属学报, 2008, 44(3): 319-324.LIU C F, MA Z Y. Effect of friction stir processing on the microstructure of as-cast 7075 aluminum alloy[J]. Acta Metallurgica Sinica, 2008, 44(3): 319-324.
[5] 李敬勇, 卓炎.搅拌摩擦加工对活塞用铸铝微观组织的影响[J]. 航空材料学报, 2013, 33(3): 60-65.LI J Y, ZHUO Y. Effect of friction stir processing on the microstructure of cast aluminum alloy applied to plunger [J]. Journal of Aeronautical Materials, 2013, 33(3): 60-65.
[6] NI D R, WANG D, FENG A H, et al. Enhancing the high-cycle fatigue strength of Mg-9Al-1Zn casting by friction stir processing[J]. Scripta Materialia, 2009, 61(6): 568-571.
[7] DIXIT M, NEWKIRT J W, MISHRA R S. Properties of friction Stir-processed Al 1100-NiTi composite [J]. Scripta Materialia, 2007, 56: 541-544.
[8] LEE I S, KAO P W, HO N J. Microstructure and mechanical properties of Al-Fe in situ nanocomposite produced by stir processing [J]. Intermetallics,2008, 16: 1104-1108.
[9] MISHRA R S, MA Z Y, CHARIT I. Friction stir processing: a novel technique for fabrication of surface composite [J]. Materials Science and Engineering A, 2003, 341(1-2): 307-310.
[10] 吕亮, 朱华, TANG Feng. 碳化硼增强铝基复合材料的摩擦磨损性能[J]. 机械工程材料, 2007, 31(10): 64-66. LÜ L, ZHU H, TANG F. Friction and wear properties of aluminum matrix composites reinforced by B4C particulates [J]. Materials for Mechanical Engineering, 2007, 31(10): 64-66.
[11] 王文明, 潘复生, 曾苏民, 等. 碳化硅颗粒增强铝基复合材料开发与应用的研究现状[J]. 兵器材料科学与工程, 2004, 27(3): 61-67. WANG W M, PAN F S, ZENG S M, et al. Current status of development and application in SiCp/Al composites [J]. Ordnance Material Science and Engineering, 2004, 27(3): 61-67.
[12] MIYAJIMA T, IWAI Y. Effect of reinforcements on sliding wear behavior of aluminum matrix composite [J]. Wear, 2003, 255(1-6): 606-616.
[13] 卢德宏, 顾明元, 施忠良, 等. SiC 含量对混杂复合材料摩擦磨损性能的影响[J]. 材料工程, 2000,(3):26-28. LU D H, GU M Y, SHI Z L, et al. Effect of the fraction of SiC on the wear and friction performance of silicon carbide and graphite particulates reinforcing aluminum matrix composite[J]. Journal of Materials Engineering, 2000,(3): 26-28.
[14] 陈跃, 邢建东, 张永振, 等, 增强颗粒对铝基复合材料摩擦学性能的影响[J]. 摩擦学学报,2001,21(4): 251-255. CHEN Y, XING J D, ZHANG Y Z, et al. The tribological behavior of aluminum-matrix composites reinforced with ceramic particulates in dry sliding against a semi-metallic frictional material[J]. Tribology, 2001, 21(4): 251-255.
[15] 吕一中, 王宝顺, 崔岩, 等. SiCp/Al复合材料-GCr15钢干摩擦磨损行为研究[J]. 航空材料学报, 2008, 28(3): 87-92. LÜ Y Z, WANG B S, CUI Y, et al. Friction and wear behavior of SiCp/Al composites dry sliding against GCr15 steel[J]. Journal of Aeronautical Materials, 2008, 28(3): 87-92.
[1] 刘鹏, 李士凯, 张元彬, 刘燕. 非晶增强铝基复合材料的微观结构及腐蚀性能[J]. 材料工程, 2015, 43(3): 67-71.
[2] 刘慧敏, 王楠, 苏娟. 原位Al2O3/Al-Cu复合材料的制备与组织研究[J]. 材料工程, 2014, 0(11): 23-27.
[3] 陈亚光, 蔡晓兰, 王开军, 胡翠, 孙鸿鹏, 乐刚. 高能球磨法制备的CNTs/Al-5%Mg复合材料的力学性能及断裂特性[J]. 材料工程, 2014, 0(11): 55-61.
[4] 李文龙, 夏春, 邢丽, 柯黎明. 搅拌针形状对搅拌摩擦加工制备CNTs/铝基复合材料均匀性的影响[J]. 材料工程, 2014, 0(1): 75-78,84.
[5] 喻利花, 苑彩云, 许俊华. 磁控溅射NbSiN复合膜的微结构和性能[J]. 材料工程, 2013, 0(7): 35-39.
[6] 施俭亮, 付业伟, 李贺军, 费杰, 朱文婷, 张翔. 炭纤维含量对新型陶瓷摩擦材料性能的影响[J]. 材料工程, 2013, (2): 45-49.
[7] 刘慧敏, 杨树青, 许萍, 李进福. 原位Al2O3P/7075复合材料微观组织与磨损行为[J]. 材料工程, 2012, 0(11): 1-5.
[8] 雷玉成, 刘珍珍, 薛厚禄, 胡文祥, 陈希章, 闫久春. SiCp/6061Al原位合金化焊接增强相界面微结构分析[J]. 材料工程, 2012, 0(1): 55-58.
[9] 王海庆, 王成国, 庄光山, 孙毅, 姚永强, 郑树伟. 混杂纤维盘式制动闸片材料的装车实验研究[J]. 材料工程, 2011, 0(7): 56-60.
[10] 刘慧敏, 宋振东, 许萍, 张晶. TiC/7075铝基复合材料的磨损实验研究[J]. 材料工程, 2011, 0(7): 66-69,74.
[11] 杨绿, 周元康, 李屹, 朱湘宁, 张勇杰. 纳米坡缕石润滑油添加剂对灰铸铁HT200摩擦磨损性能的影响[J]. 材料工程, 2010, 0(4): 94-98.
[12] 于治水, 李瑞峰, 祁凯. 辅助电磁场作用下的铝基复合材料钎焊接头界面微观组织及其分析[J]. 材料工程, 2010, 0(2): 78-80,90.
[13] 张守全, 朱警雷, 黄继华, 王海涛, 张华, 赵兴科. 反应等离子喷涂TiC/Fe涂层的摩擦磨损性能研究[J]. 材料工程, 2009, 0(7): 62-66.
[14] 欧宝立. 碳-碳双键修饰纳米SiO2及其摩擦学性能[J]. 材料工程, 2009, 0(4): 57-60.
[15] 郭绍义, 李兴俊, 杨秋合, 杨金林, 孟凡英. 激光熔覆WC-Ni/TiC涂层的组织和摩擦磨损性能研究[J]. 材料工程, 2008, 0(6): 72-75.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn