Please wait a minute...
 
材料工程  2013, Vol. 0 Issue (10): 1-12    DOI: 10.3969/j.issn.1001-4381.2013.10.001
  综述 本期目录 | 过刊浏览 | 高级检索 |
航空航天轻质高温结构材料的焊接技术研究进展
熊华平1, 毛建英2, 陈冰清1, 王群2, 吴世彪1, 李晓红3
1. 北京航空材料研究院 焊接及锻压工艺研究室, 北京 100095;
2. 航天材料及工艺研究所 特种焊接工艺技术中心, 北京 100076;
3. 中国航空研究院, 北京 100012
Research Advances on the Welding and Joining Technologies of Light-mass High-temperature Structural Materials in Aerospace Field
XIONG Hua-ping1, MAO Jian-ying2, CHEN Bing-qing1, WANG Qun2, WU Shi-biao1, LI Xiao-hong3
1. Laboratory of Welding and Forging, Beijing Institute of Aeronautical Materials, Beijing 100095, China;
2. Special Welding Technology Center, Aerospace Research Institute of Materials and Processing Technology, Beijing 100076, China;
3. Chinese Aeronautical Establishment, Beijing 100012, China
全文: PDF(2645 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 Ti-Al系金属间化合物、陶瓷和陶瓷基复合材料这两大类轻质高温结构材料在航空、航天领域具有很好的应用前景, 本文在分析大量文献的基础上, 评述了国内外焊接技术主要研究进展, 包括材料的可焊性研究进展、不同焊接方法和不同材料组合焊接接头对应的性能以及焊接技术应用研究进展, 指出耐高温焊接材料的研制、两大类轻质高温结构材料与异种材料组合的连接技术以及实际焊接接头的考核应用研究应该是今后本领域的重点研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
熊华平
毛建英
陈冰清
王群
吴世彪
李晓红
关键词 金属间化合物陶瓷基复合材料焊接强度界面    
Abstract:Ti-Al system intermetallics and high-temperature ceramics or ceramic matrix composites, are the two kinds of light-mass heat-resistance structural materials with high potential in aerospace applications. According to the published literatures, the research advances on their welding and joining technologies, including the material weldabilities, joint properties with different welding processes and material combinations, and the progresses of studies on the application of the welding and joining technologies were reviewed, and some comments are made on the reporting advances especially in the past two decades. It is pointed out that, development of new high-temperature-tolerance welding consumables or brazing alloys, joining of dissimilar materials, and study on joint assessment and engineering application would be mainly important research areas in future.
Key wordsintermetallics    ceramic matrix composite    welding and joining    strength    interface
收稿日期: 2013-07-20      出版日期: 2013-10-20
1:  P755.1  
基金资助:国家自然科学基金资助项目(59905022,50475160,51275497);航空基金资助项目(2008ZE21005)
作者简介: 熊华平(1969- ),男,研究员,博士生导师,主要从事新型焊接材料的研制、航空新材料的焊接技术研究,联系地址:北京市81信箱20分箱(100095),E-mail:xionghuaping69@sina.cn
引用本文:   
熊华平, 毛建英, 陈冰清, 王群, 吴世彪, 李晓红. 航空航天轻质高温结构材料的焊接技术研究进展[J]. 材料工程, 2013, 0(10): 1-12.
XIONG Hua-ping, MAO Jian-ying, CHEN Bing-qing, WANG Qun, WU Shi-biao, LI Xiao-hong. Research Advances on the Welding and Joining Technologies of Light-mass High-temperature Structural Materials in Aerospace Field. Journal of Materials Engineering, 2013, 0(10): 1-12.
链接本文:  
http://jme.biam.ac.cn/CN/10.3969/j.issn.1001-4381.2013.10.001      或      http://jme.biam.ac.cn/CN/Y2013/V0/I10/1
[1] DAVID S A, HORTON J A, GOODWIN G M, et al.Weldability and microstructure of a titanium aluminide[J].Welding Journal, 1990, 69 (4): 133-140.
[2] BAESLACK III W A, BRODERICK T. Effect of cooling rate on the structure and hardness of a Ti-26Al-10Nb-3V-1Mo titanium aluminide[J]. Scripta Metallurgica at Materialia, 1990, 24(2):319-324.
[3] THREADGILL P L. The prospects for joining titanium aluminides[J]. Materials Science and Engineering:A, 1995, 192-193(2): 640-646.
[4] MARTIN G S, ALBRIGHT C E, ONEST A J. An evaluation of CO2 laser beam welding on a Ti3A1-Nb alloy[J]. Welding Journal, 1995, 74 (2):77-82.
[5] WU A P, ZOU G S, REN J L. Microstructures and mechanical properties of Ti-24Al-17Nb (at.%) laser beam welding joints[J]. Intermetallics, 2002, 10(7): 647-652.
[6] ACOFF V L, THOMPSON R G, GRIFFIN R D, et al. Effect of heat treatment on microstructure and microhardness of spot welds in Ti-26Al-11Nb[J]. Materials Science and Engineering:A, 1992, 152 (1-2): 304-309.
[7] 刘博, 武英, 周朝霞, 等. Ti-23Al-14Nb-3V合金氩弧焊接头的显微组织及其力学性能[J].材料科学与工艺, 1997, 5 (1): 45-49.LIU B, WU Y, ZHOU C X, et al. Microstructure and mechanical properties of Ti-23Al-14Nb-3V alloy argon-arc welding joints[J]. Material Science and Technology, 1997, 5 (1): 45-49.
[8] 刘卫红, 曹春晓, 李艳, 等. 热工艺对Ti3Al基合金力学性能和焊接性影响[J]. 航空材料学报, 2008, 28 (3): 62-65.LIU W H, CAO C X, LI Y, et al. Effects of hot processes on mechanical properties and weldability of Ti3Al-based alloy[J]. Journal of Aeronautical Materials, 2008, 28 (3): 62-65.
[9] WANG G Q, WU A P, ZHAO Y. Effect of post-weld heat treatment on microstructure and properties of Ti-23Al-17Nb alloy laser beam welding joints[J]. Transactions of Nonferrous Metals Society of China, 2010, 20 (5): 732-739.
[10] 刘卫红, 李艳, 毛唯, 等. Ti-24Al-15Nb-1Mo合金氩弧焊[J]. 航空材料学报, 2006, 26 (3): 111-115. LIU W H, LI Y, MAO W, et al. Ti-24Al-15Nb-1Mo alloy argon-arc welding[J]. Journal of Aeronautical Materials, 2006, 26 (3): 111-115.
[11] TAN L J, YAO Z K, ZHOU W, et al. Microstructure and properties of electron beam welded joint of Ti-22Al-25Nb/TC11[J]. Aerospace Science and Technology, 2010, 14(5): 302-306.
[12] CADDEN C H, YANG N Y C, HEDALEY T H. Microstructural evolution and mechanical properties of brazed joints in Ti-13.4Al-21.2Nb[J]. Welding Journal, Welding Research Supplement, 1997, 8(2): 316-325.
[13] 陈波, 熊华平, 毛唯, 等. AgCu基钎料钎焊Ti3Al基合金的接头组织与性能[J]. 焊接, 2010, (10): 29-32. CHEN B, XIONG H P, MAO W, et al. Microstructure and properties of Ti3Al-based alloy brazing joint when using AgCu-based alloy as filler metal[J]. Welding & Joining, 2010, (10): 29-32.
[14] HE P, FENG J C, ZHOU H. Microstructure and strength of brazed joints of Ti3Al-based alloy with NiCrSiB[J]. Materials Characterization, 2004, 52(4-5): 309-318.
[15] 熊华平, 陈波, 毛唯, 等. Ti-Al基合金的扩散焊研究[J]. 材料科学与工艺, 2009, 17(1): 16-20. XIONG H P, CHEN B, MAO W, et al. Diffusion bonding of Ti-Al-based alloy[J]. Material Science and Technology, 2009, 17(1): 16-20.
[16] THEADGILL P L. Metallurgical aspects of joining titanium aluminide-alloys[J]. Proc Int Symp on Intermetallic Compounds (JIMIS-6)JIM, 1991, (10):1021-1025.
[17] MALLORY L, BAESLACK III W A, PHILLIPS D. Evolution of the weld heat-affected zone microstructure in a Ti-48Al-2Cr-2Nb gamma titanium aluminide[J]. Journal of Materials Science Letters, 1994, 13(14):1061-1065.
[18] ARENAS M F, ACOFF V L. Analysis of gamma titanium aluminide welds produced by gas tungsten arc welding[J]. Welding Journal, 2003, 82 (5): 110-115.
[19] HIROSE A, KOBAYASHI K F, ARITA Y. Microstructure and crack sensitivity of laser-fusion zones of Ti-46mol-percent Al-2mol-percent Mo alloy[J]. Journal of Materials Science, 1995, 30 (4): 970-979.
[20] THREADGILL P L, DANCE B G I. Joining of intermetallic alloys-further studies[J]. The TWI Journal, 1997, 6 (2): 257-316.
[21] 张秉刚, 冯吉才, 吴林, 等. TiAl/TiAl和TiAl/TC4真空电子束焊接头组织结构及焊接性[J]. 焊接, 2004, (5): 14-16. ZHANG B G, FENG J C, WU L, et al. Microstructure and welding properties of TiAl/TiAl and TiAl/TC4 vacuum electric beam welding joint[J]. Welding & Joining, 2004, (5): 14-16.
[22] DING J, WANG J N, HU Z H, et al. Joining of γ-TiAl to low alloy steel by electron beam welding[J]. Materials Science and Technology, 2002, 18(2): 908-912.
[23] UENISHI K, HROYUKI S, KOJIRO F K. Joining of intermetallic compound TiAl by using Al filler metal[J]. Zeitschrift für Metallkunde, 1995, 86 (4): 270-274.
[24] SHIUE R K, WU S K, CHEN S Y. Infrared brazing of TiAl intermetallic using pure silver[J]. Intermetallics, 2004, 12(7-9): 929-936.
[25] TETSUI T. Effects of brazing filler on properties of brazed joints between TiAl and metallic materials[J]. Intermetallics, 2001, 9(3): 253-260.
[26] 叶雷, 熊华平, 陈波, 等. CoFe基和Fe基高温钎料钎焊TiAl合金接头微观组织研究[J]. 材料工程, 2010, (10): 61-64. YE L, XIONG H P, CHEN B, et al. Microstructure of TiAl alloy high temperature brazing joint when using CoFe-based or Fe-based alloy as the filler metal[J]. Journal of Materials Engineering, 2010, (10): 61-64.
[27] CAO J, HE P, WANG M. Mechanical milling of Ti-Ni-Si filler metal for brazing TiAl intermetallics[J]. Intermetallics, 2011, 19(7): 855-859.
[28] NODA T, SHIMIZU T, OKABE M, et al. Joining of TiAl and steels by inducting brazing[J]. Materials Science and Engineering, 1997, A239-240: 613-618.
[29] 陈波, 熊华平, 毛唯, 等. 采用Ti-15Cu-15Ni钎料的TiAl/42CrMo钢接头组织及形成机理[J]. 航空材料学报, 2006, 26 (3): 317-318. CHEN B, XIONG H P, MAO W, et al. Microstructure and its formation mechanism of TiAl/42CrMo steel brazing joint when using Ti-15Cu-15Ni as the filler metal[J]. Journal of Aeronautical Materials, 2006, 26 (3): 317-318.
[30] LI H X, HE P, LIN T S, et al. Microstructure and shear strength of reactive brazing joints of TiAl/Ni-based alloy[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(2): 324-329.
[31] 刘会杰, 陶秋燕. SiC陶瓷与TiAl合金的真空钎焊[J]. 焊接, 1999, (3): 7-10. LIU H J, TAO Q Y. Vacuum brazing of SiC ceramic and TiAl alloy[J]. Welding & Joining, 1999, (3): 7-10.
[32] 陈波, 熊华平, 毛唯, 等.SiO2f/SiO2复合材料与TC4, Ti3Al和TiAl的钎焊[J].材料工程, 2012, (2): 41-44. CHEN B, XIONG H P, MAO W, et al. Brazing of SiO2f/SiO2 composite and TC4, Ti3Al, TiAl[J]. Journal of Materials Engineering, 2012, (2): 41-44.
[33] ÇM G, CLEMENS H, GERLING R, et a1. Diffusion bonding of γ-TiAl sheets[J]. Intermetallics, 1999, 7(9): 1025-1031.
[34] GLATZ W, CLEMENS H. Diffusion bonding of intermetallic Ti-47Al-2Cr-0.2Si sheet material and mechanical properties of joints at room temperature and elevated temperatures[J]. Intermetallics, 1997, 5(6): 415-423.
[35] CAM G, IPEKOGLU G, BOHM K H, et al. Investigation into the microstructure and mechanical properties of diffusion bonded TiAl alloys[J]. Journal of Materials Science, 2006, 41(16): 5273-5282.
[36] 段辉平, 罗俊, 张涛. TiAl/IN718合金过渡液相连接[J]. 北京航空航天大学学报, 2004, 30 (10): 984-988. DUAN H P, LUO J, ZHANG T. Transition liquid-phase connection of TiAl/IN718 alloy[J]. Journal of Beijing University of Aeronautics and Astronautics, 2004, 30 (10): 984-988.
[37] 何鹏, 李海新, 林铁松, 等. TiAl合金与镍基高温合金的扩散连接[J]. 焊接学报, 2012, 33 (1): 18-20. HE P, LI H X, LIN T S, et al. Diffusion bonding of TiAl alloy and Ni-based superalloy[J]. Transactions of The China Welding Institution, 2012, 33 (1): 18-20.
[38] TAUGHI K, AYADA M, ISHIHARA K N. Near-net shape processing of TiAl intermetallic compound by Pseudo-HIP-SHS. Proceedings of the TMS95 Annual Meeting on Gamma Titanium Aluminide. Nevada, USA:TMS, 1995.619-626.
[39] UENISHI K, SUNI H, KOBAYASHI K F. Joining of the intermetallic compound using SHS reaction[J]. Zeitschrift für Metallkunde, 1995, 86 (1): 64-68.
[40] 宫下 NFDA1, 日野春树. TiAl金属间化合物の摩擦压接特性[J]. 日本金属学会志, 1994, 58 (2): 215-220. TAKUYA M, HARUKI H. Friction welding characteristics of TiAl intermetallic compound[J]. J Japan Inst Metals, 58(2): 215-220.
[41] LEE W B, KIM Y J, JUNG S B. Effects of copper insert layer on the properties of friction welded joints between TiAl and AISI4140 structural steel[J]. Intermetallics, 2004, 12(6): 671-678.
[42] HOU K N, JUHAS M C, BAESLACK III W A, et al. An electron microscope study of inertia friction welds in Ti-48Al-2Cr-2Nb gamma titanium aluminide.Tennesseen, USA:Proc Gatlinburg Conference, 1992.1135-1137.
[43] 李晓红, 熊华平, 张学军. 先进航空材料焊接技术[M]. 北京:国防工业出版社, 2012.
[44] BRATOLOTTA P A, DAVID L K. Titanium aluminide applications in the high speed civil transport[J]. The Minerals, Metals & Materials Society, 1999, (5):3-10.
[45] CLEMENS H, LORICH A, EBERHARDT N, et al. Technology, properties and applications of intermetallic γ-TiAl based alloys[J]. Zeitschrift für Metallkd, 1999, 90 (8): 569-580.
[46] XUAN N D. Friction welding interlayer and method for joining gamma titanium aluminide to steel, and turbocharger components thereof. USA patent:6291086 B1, 2001-09-18.
[47] FERNIE J A, DREW R A L, KNOWLES K M. Joining of engineering ceramics[J]. International Materials Reviews, 2009, 54(5):283-331.
[48] ARAVINDAN S, KRISHNAMURTHY R. Joining of ceramic composites by microwave heating[J]. Mater Lett, 1998, 38(4):245-249.
[49] ESPOSITO L, BELLOSI A. Joining of ceramic oxides by liquid wetting and capillarity[J].Scr Mater, 2001, 45(7):759-766.
[50] MAILLIART O, CHAUMAT V, HODAJ F. Wetting and joining of silicon carbide with a molten glass in air. Proc of 9th Int Brazing & Soldering Conference. Aachen, Germany:DVS-Berichte, 2010. 76-80.
[51] CHANG L S, HUANG C F. Transient liquid phase bonding of alumina to alumina via boron oxide interlayer[J]. Ceram Int, 2004, 30(8):2121-2127.
[52] GROSS-BARSNICK S M, GREVEN B C, BATFALSKY P, et al. Recent results in SOFC glass-ceramic sealant technology development. Brazing Lectures and Posters of the 10th International Conference, High Temperature Brazing and Diffusion Bonding.Germany:German Welding Society, 2013.50-53.
[53] ZHOU F. Joining of silicon nitride ceramic composites with Y2O3-Al2O3-SiO2 mixtures[J]. J Mater Process Technol, 2002, 127(3): 293-297.
[54] GOPAL M, SIXTA M, JONGHE L D. Seamless joining of silicon nitride ceramics[J]. J Am Ceram Soc, 2001, 84(4):708-712.
[55] DOMNGUEZ-RODRGUEZA, GUIBERTEAY F, JIMENEZ-MELENDO M. Heterogenous junction of yttria partially stabilized zirconia by superplastic flow[J]. J Mater Res, 1998, 13(6):1631-1636.
[56] MUN J D, DERBY B, SUTTON A P. Texture change in Ni and Cu foils on diffusion bonding to zirconia[J]. Scr Mater, 1997, 36(1):1-6.
[57] ESPOSITO L, BELLOSI A, GUICCIARDI S, et al. Solid state bonding of Al2O3 with Cu, Ni and Fe: characteristics and properties[J]. J Mater Sci, 1998, 33(7):1827-1836.
[58] POLANCO R, PABLOS A D, MIRANZO P. Metal-ceramic interfaces: joining silicon nitride-stainless steel[J]. Appl Surf Sci, 2004, 238(1-4):506-512.
[59] WEI P, LI J, CHEN J. Titanium metallization of Si3N4 ceramics by molten salt reaction: coating microstructure and brazing property[J]. Thin Solid Films, 2002, 422(1-2):126-129.
[60] OKAMURA H. Brazing ceramics and metals[J]. Welding International, 1993, 7(3):236-239.
[61] KANG S, KIM H J. Design of high-temperature brazing alloys for ceramic-metal joints[J].Welding Journal, 1995, 74(9):289-295.
[62] 万传庚, PARITSALIS, EUSTATHOPULOS N. 高温钎料PdCuTi在氧化铝上润湿及界面反应[J].焊接学报, 1994, 15(4):209-213. WAN C G, PARITSALIS, EUSTATHOPULOS N. Wetting and interface metallurgy of PdCuTi superalloy filler metal on Al2O3 ceramic[J]. Transactions of the China Welding Institution, 1994, 15(4):209-213.
[63] NAKA M, TANAKA T, OKAMOTO I. Joining of silicon nitride using amorphous Cu-Ti filler metal[J]. Transactions of JWRI, 1987, (1): 83.
[64] XIONG H P, WAN C G, ZHOU Z F. Development of a new CuNiTiB brazing alloy for joining Si3N4 to Si3N4[J].Metall Mater Trans A, 1998, 29(10):2591-2596.
[65] HADIAN A M, DREW R A L. Strength and microstructure of silicon nitride ceramics brazed with nickel-based chromium-silicon alloys[J].J Am Ceram Soc, 1996, 79(3):659-665.
[66] CHEN J H, WANG G Z. Segregation of chromium at the interface between Ni-Cr-Si-Ti brazing filler metal and Si3N4 ceramics[J]. J Mater Sci Lett, 1993, 12(1):87-90.
[67] REICHEL U, WARLIMONT H Z. Rapidly solidified CoTi alloys as brazing foils for high-temperature joining of silicon nitride ceramic[J].Zeitschrift für Metallkude, 1999, 90(9):699-704.
[68] PAULASTO M, CECCONE G, PETEVES S D.Joining of silicon nitride via a transient liquid[J]. Scripta Mater, 1997, 10:1167-1173.
[69] OKAMURA H. Brazing ceramics and metals[J]. Welding International, 1993, 7(3):236-242.
[70] LOEHMAN R E. Recent progress in ceramic joining[J]. Key Engineering Materials, 1999, 161-163: 657-662.
[71] XIONG H P, CHEN B, MAO W, et al. Wettability of V-active Pd-based alloys on Si3N4 ceramic and the strength of Si3N4/Si3N4 joints. Aachen, Germany:International Brazing &Soldering Conference, 2010.98-102.
[72] SUN Y, ZHANG J, GENG Y P, et al. Microstructure and mechanical properties of an Si3N4/Si3N4 joint brazed with Au-Ni-Pd-V filler alloy[J]. Scripta Materialia, 2011, 64: 414-417.
[73] NAKA M, TANIGUCHI H, OKAMOTO I. Heat-resistant brazing of ceramics (reportⅠ)[J]. Transactions of JWRI, 1990, 19(1):25-29.
[74] XIONG H P, CHEN B, KANG Y S, et al. Wettability of Co-V, and PdNi-Cr-V system brazing alloys on SiC ceramic and interfacial reactions[J]. Scripta Materialia, 2007, 56(2): 173-176.
[75] MCDERMID J R, PUGH M D, DREW R A L. The interaction of reaction-bonded silicon carbide and Inconel600 with a nickel-based brazing alloy[J]. Metallurgical Transactions A, 1989, 20(9): 1803-1810.
[76] XIONG H P, MAO W, XIE Y H, et al. Control of interfacial reactions and strength of the SiC/SiC joints brazed with newly-developed Co-based brazing alloy[J]. Journal of Materials Research, 2007, 22(10): 2727-2736.
[77] XIONG H P, MAO W, XIE Y H, et al. Brazing of SiC to a wrought nickel-based superalloy using CoFeNi(Si, B)CrTi filler metal[J]. Materials Letters, 2007, 61(25): 4662-4665.
[78] MARTIN H P, TRIEBRET A, MATTHEY B. Ta-Ni-braze for high temperature stable ceramic-ceramic junctions. Brazing Lectures and Posters of the 10th International Conference, High Temperature Brazing and Diffusion Bonding. Germany:German Welding Society, 2013.54-58.
[79] KAPPALOV B K, VEIS M M, KADUN Y I, et al. Brazing C/C composite materials with metal-containing brazing alloys[J]. Welding International, 1992, 6(9): 562-566.
[80] 熊华平, 毛唯, 陈波, 等.陶瓷及陶瓷基复合材料高温钎料的研究现状与进展[J].焊接, 2008, (11), 19-24. XIONG H P, MAO W, CHEN B, et al. Research status and progress of high-temperature ceramics or ceramic matrix composites[J]. Welding & Joining, 2008, (11):19-24.
[81] FOX C W, SLAUGHTER G M. Brazing of ceramics[J]. Welding Journal, 1964, 43(7): 591-559.
[82] ANDO Y, TOBITA S, FUJIMURA T. Development of bonding methods for graphite materials[M]. Japan:Japanese Atomic Energy Research Institute, 1964.
[83] DONNELLY R G D, GILLILAND R G G, FOX C W F, et al. The development of alloys and techniques for brazing graphite. Hollywood: Paper Presented at Fourth National SAMPE Symposium, 1962.
[84] TONG Q Y, CHENG L F. Liquid infiltration joining of 2D C/SiC composite[J]. Science and Engineering of Composite Materials, 2006, 13(1): 31-36.
[85] XIONG H P, CHEN B, MAO W M. Joining of Cf/SiC composite with Pd-Co-V brazing filler[J]. Welding in the World, 2012, 56(1-2):76-80.
[86] KORN D, ELSSNER G, CANNON R M, et al. Fracture properties of interfacially doped Nb-Al2O3 bicrystals: I, fracture characteristics[J]. Acta Mater, 2002, 50(15):3881-3901.
[87] 陈波, 熊华平, 毛唯, 等.SiO2f/SiO2复合材料与铜、不锈钢的钎焊[J].航空材料学报, 2012, 32(1): 35-39. CHEN B, XIONG H P, MAO W, et al. Brazing of SiO2f/SiO2 composite to copper and stainless steel[J]. Journal of Aeronautical Materials, 2012, 32(1): 35-39.
[88] CANNON R M, KORN D, ELSSNER G, et al. Fracture properties of interfacially doped Nb-Al2O3 bicrystals: II, relation of interfacial bonding, chemistry and local plasticity[J]. Acta Mater, 2002, 50(15): 3903-3925.
[89] PÖNICKE A, SCHILM J, KUSNEZOFF M, et al. Reactive air brazing as joining technology for SOFC. Proc of 9th Int Brazing & Soldering Conference.Aachen, Germany: DVS-Berichte, 2010.70-75.
[90] PALIT D, MEIER A M. Reaction kinetics and mechanical properties in the reactive brazing of copper to aluminium nitride[J]. J Mater Sci, 2006, 41(21):7197-7209.
[91] WENG W P, WU H W, CHAI Y H, et al. Interfacial characteristics for active brazing of alumina to superalloys[J]. Institute of Materials Science and Engineering, 1997, 28(2):35-40.
[92] XIONG J H, HUANG J H, HUA Z, et al. Brazing of carbon fiber reinforced SiC composite and TC4 using Ag-Cu-Ti active brazing alloy[J]. Materials Science and Engineering:A, 2010, 527(4-5): 1096-1101.
[93] 熊进辉, 黄继华, 薛行雁. Cf/SiC复合材料与Ti合金的Ag-Cu-Ti-W复合钎焊[J]. 航空材料学报, 2009, 29(6):48-52. XIONG J H, HUANG J H, XUE X Y. Composite brazing of Cf/SiC composite and Ti-based alloy when using Ag-Cu-Ti-W as the filler metal[J]. Journal of Aeronautical Materials, 2009, 29(6):48-52.
[94] 梁赤勇, 诸永国, 张为军, 等.Cf/SiC复合材料与Nb合金的连接[J].宇航材料工艺, 2009, (3):45-48. LIANG C Y, ZHU Y G, ZHANG W J, et al. Joining of Cf/SiC composite and Nb-based alloy[J]. Aerospace Materials & Technology, 2009, (3):45-48.
[95] 张勇. Cf/SiC陶瓷基复合材料与高温合金的高温钎焊研究.北京:钢铁研究总院, 2006.
[96] 熊华平, 吴世彪, 陈波, 等. 缓解陶瓷/金属连接接头残余热应力的方法研究进展[J]. 焊接学报, 2013, 34(9):107-112. XIONG H P, WU S B, CHEN B, et al. Research advances on the methods of decreasing residual thermal stresses within the ceramic-metal joints[J]. Transactions of the China Welding Institution, 2013, 34(9):107-112.
[97] FERNIE J A, HANSON W B. Feasibility trials on heat sink attachment for new electronic ceramic substrates[J]. Processing and Fabrication of Advanced Materials V, 1996, (3):743-754.
[98] TUCKER M C, JACOBSON C P, DE JONGHE L C. A braze system for sealing metal-supported solid oxide fuel cells[J]. J Power Sources, 2006, 160(2):1049-1057.
[99] APPENDINO P, CASALEGNO V, FERRARIS M, et al. Joining of C/C composites to copper[J]. Fusion Eng Des, 2003, 66-68(9):225-229.
[100] 闫连生, 王涛, 邹武, 等. 国外复合材料推力室技术研究进展[J]. 固体火箭技术, 2003, 26(1):64-66. YAN L S, WANG T, ZOU W, et al. Research advances on composite thrust chamber technology abroad[J]. Journal of Solid Rocket Technology, 2003, 26(1):64-66.
[101] 王平, 张权明, 李良.Cf/SiC陶瓷基复合材料车削加工工艺研究[J].火箭推进, 2011, 37(2):67-70. WANG P, ZHANG Q M, LI L. Research on turning technology of Cf/SiC ceramics matrix composite[J]. Journal of Rocket Propulsion, 2011, 37(2):67-70.
[1] 王重, 林万明, 马胜国, 杨慧君, 梁红玉, 乔珺威. 冷轧对Al10Cu25Co20Fe20Ni25高熵合金组织结构及力学性能的影响[J]. 材料工程, 2015, 43(8): 50-55.
[2] 张昭, 吴奇, 张洪武. 转速对搅拌摩擦焊接搅拌区晶粒尺寸影响[J]. 材料工程, 2015, 43(7): 1-7.
[3] 吕凯, 刘向东, 王浩, 冯华, 李艳芬. 短切硅酸铝纤维增强硅溶胶型壳的抗弯强度及高温自重变形[J]. 材料工程, 2015, 43(7): 56-61.
[4] 邢淑清, 陆恒昌, 麻永林, 韩娜, 李振团, 陈重毅. 800MPa级高强钢焊接粗晶区再热循环的组织转变规律[J]. 材料工程, 2015, 43(7): 93-99.
[5] 喻胜飞, 罗武生. 石蜡/聚脲相变微胶囊的制备及表征[J]. 材料工程, 2015, 43(7): 100-104.
[6] 刘伟, 曹腊梅, 王岭, 徐彩虹, 益小苏. RTM成型工艺对Cf/SiBCN陶瓷基复合材料性能的影响[J]. 材料工程, 2015, 43(6): 1-6.
[7] 许天旱, 王荣, 冯耀荣, 雒设计, 王党会, 杨宝. 应力比对K55套管钻井钢疲劳裂纹扩展性能的影响[J]. 材料工程, 2015, 43(6): 79-84.
[8] 龚坚, 罗海文. 新能源汽车驱动电机用高强度无取向硅钢片的研究与进展[J]. 材料工程, 2015, 43(6): 102-112.
[9] 王忻凯, 邢丽, 徐卫平, 黄春平, 刘奋成. 工艺参数对铝合金搅拌摩擦增材制造成形的影响[J]. 材料工程, 2015, 43(5): 8-12.
[10] 蒋淑英, 李世春. Al/Fe液-固界面扩散反应层生长动力学分析[J]. 材料工程, 2015, 43(5): 62-66.
[11] 荆慧, 鲁中良, 苗恺, 田国强, 庞师坤, 董茵, 李涤尘. 凝胶注模空心叶片氧化铝基陶瓷铸型的中温强度[J]. 材料工程, 2015, 43(4): 1-7.
[12] 刘政军, 宫颖, 苏允海. 镁铝异种金属TIG焊接头性能的研究[J]. 材料工程, 2015, 43(3): 18-22.
[13] 谢俊峰, 朱有利, 黄元林, 白昶. 2A12与2A11铝合金超声波焊接工艺与组织研究[J]. 材料工程, 2015, 43(3): 54-59.
[14] 郑锐, 林建平, 吴倩倩, 吴泳荣. 结构胶胶接汽车车身金属接头抗环境腐蚀性能研究进展[J]. 材料工程, 2015, 43(3): 98-105.
[15] 雷玉成, 龚晨诚, 罗雅, 肖波, 朱强. 激励电流对MGH956合金原位合金化TIG焊接头性能的影响[J]. 材料工程, 2015, 43(2): 7-13.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn