Please wait a minute...
 
材料工程  2014, Vol. 0 Issue (2): 87-93,98    DOI: 10.3969/j.issn.1001-4381.2014.02.017
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
高压气相热充氢对SUJ2轴承钢超高周疲劳行为的影响
李永德1, 徐娜1, 郭卫民1, 吴晓峰1, 时军波1, 刘树伟2
1. 山东省分析测试中心 山东省材料失效分析与安全评估工程技术研究中心, 济南 250014;
2. 中国科学院金属研究所 沈阳材料科学国家实验室, 沈阳 110016
The Influence of High Pressure Thermal Hydrogen Charging on Very High Cycle Fatigue Behavior of SUJ2 Bearing Steel
LI Yong-de1, XU Na1, GUO Wei-min1, WU Xiao-feng1, SHI Jun-bo1, LIU Shu-wei2
1. Shandong Provincial Engineering and Technology Center of Materials Failure Analysis and Safe Evaluation, Shandong Analysis and Test Center, Jinan 250014, China;
2. Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(3550 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 研究了JIS-SUJ2轴承钢的超高周疲劳行为及高压气相热充氢对疲劳性能的影响。结果表明,高压气相热充氢后疲劳性能明显降低,裂纹源周围“GBF”区的颗粒状特征变浅甚至消失。断口上裂纹源处缺陷尺寸及分布对疲劳寿命没有影响,疲劳寿命随着“GBF”与夹杂物尺寸比的增加而增加。充氢前后裂纹源边缘的应力强度因子范围均近似正比于裂纹尺寸的1/3次方,“GBF”裂纹扩展的门槛值正比于“GBF”尺寸的1/6次方。高压气相热充氢明显提高了氢致附加应力强度因子,估算的“GBF”裂纹尺寸的极限值与实验值能够较好地吻合。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李永德
徐娜
郭卫民
吴晓峰
时军波
刘树伟
关键词 轴承钢超高周疲劳夹杂物GBF非扩散氢    
Abstract:The very high cycle fatigue (VHCF) behavior of JIS-SUJ2 bearing steel and the effects of high pressure thermal hydrogen charging (HPTHC) on fatigue properties were investigated. The results demonstrate that the fatigue properties of this bearing steel is obviously reduced after being pre-charged by HPTHC. The granular feature of "GBF" area for pre-charged specimens becomes light, sometimes even vanished. The distributions and size of the defects at the crack origins have no apparent effect on fatigue life.The fatigue life increases with increasing the relative size of "GBF" to inclusion. The stress intensity factor range at the periphery of crack origin before and after being pre-charged is approximately proportional to 1/3 power of the crack origin size, the crack growth threshold for "GBF" crack is proportional to 1/6 power of the "GBF" size. The additional stress intensity factor created by hydrogen multiplies up after being pre-charged by HPTHC, the calculated critical values of "GBF" are well in agreement with the experimental values.
Key wordsbearing steel    very high cycle fatigue    inclusion    GBF    non-diffusible hydrogen
收稿日期: 2012-11-22     
1:  TG142.1  
基金资助:国家自然科学基金项目(51101094);山东省科学院科技发展基金项目(2011-4)
作者简介: 李永德(1981-),男,博士,现从事疲劳与断裂及失效分析研究,联系地址:山东省济南市历下区科院路19号山东省分析测试中心(250014),E-mail: ydli@alum.imr.ac.cn
引用本文:   
李永德, 徐娜, 郭卫民, 吴晓峰, 时军波, 刘树伟. 高压气相热充氢对SUJ2轴承钢超高周疲劳行为的影响[J]. 材料工程, 2014, 0(2): 87-93,98.
LI Yong-de, XU Na, GUO Wei-min, WU Xiao-feng, SHI Jun-bo, LIU Shu-wei. The Influence of High Pressure Thermal Hydrogen Charging on Very High Cycle Fatigue Behavior of SUJ2 Bearing Steel. Journal of Materials Engineering, 2014, 0(2): 87-93,98.
链接本文:  
http://jme.biam.ac.cn/jme/CN/10.3969/j.issn.1001-4381.2014.02.017      或      http://jme.biam.ac.cn/jme/CN/Y2014/V0/I2/87
[1] 邵红红,蒋小燕,张道军. 40CrNiMoA钢不同微观组织超声疲劳寿命研究[J]. 材料工程, 2008,(5):24-28. SHAO H H, JIANG X Y, ZHANG D J. Ultrasonic fatigue lives of 40CrNiMoA steel with different microstructures[J]. Journal of Materials Engineering, 2008, (5):24-28.
[2] 胡燕慧,钟群鹏,张峥,等. 超声疲劳试验方法对S06钢疲劳性能及裂纹萌生机制的影响[J]. 材料工程, 2011,(2):26-30. HU Y H, ZHONG Q P, ZHANG Z, et al. Effect of ultrasonic fatigue testing method on fatigue properties and crack initiation mechanism of S06 steel[J]. Journal of Materials Engineering, 2011, (2):26-30.
[3] 洪友士,赵爱国,钱桂安. 合金材料超高周疲劳行为的基本特征和影响因素[J]. 金属学报, 2009, 45(7):769-780. HONG Y S, ZHAO A G, QIAN G A. Essential characteristics and influential factors for very-high-cycle fatigue behavior of metallic materials[J]. Acta Metallurgica Sinica, 2009, 45(7): 769-780.
[4] 周承恩,谢季佳,洪友士. 超高周疲劳研究现状及展望[J]. 机械强度, 2004, 26(5):526-533. ZHOU C E, XIE J J, HONG Y S. Retrospect and prospect of very high cycle fatigue[J]. Journal of Mechanical Strength, 2004, 26(5): 526-533.
[5] 王清远,刘永杰. 结构金属材料超高周疲劳破坏行为[J]. 固体力学学报, 2010, 31(5):496-502. WANG Q Y, LIU Y J. Understanding fatigue failure in structural metals in ultra-high cycle regime[J]. Chinese Journal of Solid Mechanics, 2010, 31(5): 496-502.
[6] 胡燕慧,张铮,钟群鹏,等. 金属材料超高周疲劳研究综述[J]. 机械强度, 2009, 31(6): 979-985. HU Y H, ZHANG Z, ZHONG Q P, et al. Recent development of research on very high cycle fatigue of metal materials[J]. Journal of Mechanical Strength, 2009, 31(6): 979-985.
[7] 鲁连涛,张卫华. 金属材料超高周疲劳研究综述[J]. 机械强度, 2005, 27(3): 388-395. LU L T, ZHANG W H. Review of research on very high cycle fatigue of metal materials[J]. Journal of Mechanical Strength, 2005, 27(3): 388-395.
[8] 李守新,翁宇庆,惠卫军,等. 高强度钢超高周疲劳性能—非金属夹杂物的影响[M]. 北京: 冶金工业出版社, 2010. 1-6.
[9] STANZL S E, TSCHEGG E K, MAYER H. Lifetime measurements for random loading in the very high cycle fatigue range[J]. International Journal of Fatigue, 1986, 8(4): 195-200.[ZK)]
[10] MURAKAMI Y, YOKOYAMA N N, NAGATA J. Mechanism of fatigue failure in ultralong life regime[J]. Fatigue Fracture Engineering Materials Structure, 2002, 25(8-9): 735-746.
[11] BATHIAS C, PARIS P C. Gigacycle fatigue in mechanical practice[M]. New York: Marcel Dekker, 2005. 1-7.
[12] WANG Q Y, BERARD J Y, DUBARRE A, et al. Gigacycle fatigue of ferrous alloys[J]. Fatigue Fracture Engineering Materials Structure, 1999, 22(8): 667-673.
[13] YANG Z G, LI S X, ZHANG J M, et al. The fatigue behaviors of zero-inclusion and commercial 42CrMo steels in the super-long fatigue life regime[J]. Acta Materialia, 2004, 52(18): 5235-5241.
[14] MURAKAMI Y, NOMOTO T, UEDA T, et al. On the mechanism of fatigue failure in the superlong life regime (N >107 cycles). PartⅠ: Influence of hydrogen trapped by inclusions[J]. Fatigue Fracture Engineering Materials Structure, 2000, 23(11): 893-902.
[15] MURAKAMI Y, NOMOTO T, UEDA T, et al. On the mechanism of fatigue failure in the superlong life regime (N >107 cycles). PartⅡ: A fractographic investigation[J]. Fatigue Fracture Engineering Materials Structure, 2000, 23(11): 903-910.
[16] SAKAI T, SATO Y, OGUMA N. Characteristic S-N properties of high-carbon-chromium-bearing steel under axial loading in long-life fatigue[J]. Fatigue Fracture Engineering Materials Structure, 2002, 25(8-9): 765-773.
[17] SHIOZAWA K, LU L, ISHIHARA S. S-N curve characteristics and subsurface crack initiation behaviour in ultra-long life fatigue of a high carbon-chromium bearing steel[J]. Fatigue Fracture Engineering Materials Structure, 2001, 24(12): 781-790.
[18] OCHI Y, MATSUMURA T, MASAKI K, et al. High-cycle rotating bending fatigue property in very long-life ragime of high-strength steels[J]. Fatigue Fracture Engineering Materials Structure, 2002, 25(8-9): 823-830.
[19] WANG Q Y, BATHIAS C, KAWAGOISHI N, et al. Effect of inclusion on subsurface crack initiation and gigacycle fatigue strength[J]. International Journal of Fatigue, 2002, 24(12): 1269-1274.
[20] 李永德,李守新,杨振国,等. 氢对高强弹簧钢50CrV4超高周疲劳性能的影响[J]. 金属学报, 2008, 44(1): 64-68. LI Y D, LI S X, YANG Z G, et al. Influence of hydrogen on ultrahigh cycle fatigue properties of high strength spring steel 50CrV4[J]. Acta Metallurgica Sinica, 2008, 44(1): 64-68.
[21] LI Y D, YANG Z G, LI S X, et al. Effect of hydrogen on fatigue strength of high-strength steels in the VHCF regime[J]. Advcanced Engineering Materials, 2009, 11(7): 561-567.
[22] 褚武扬,乔立杰,陈奇志. 断裂与环境断裂[M]. 北京:科学出版社, 2000. 95-109.
[23] NAKATANI M, FUJIHARA H, SAKIHARA M, et al. Fatigue crack growth acceleration caused by irreversible hydrogen desorption in high-strength steel and its mechanical condition[J]. Materials Science and Engineering:A, 2011, 528(25-26): 7729-7738.
[24] WANG M Q, AKIYAMA E, TSUZAKI K. Hydrogen degradation of a boron-bearing steel with 1050 and 1300 MPa strength levels[J]. Scripta Materialia, 2005, 52(5): 403-408.
[25] MURAKAMI Y, MATSUNAGA H. The effect of hydrogen on fatigue properties of steels used for fuel cell system[J]. International Journal of Fatigue, 2006, 28(11): 1509-1021.
[26] 郭昀静,王春芳,李建锡,等. 利用TDS研究二次硬化钢中氢的扩散行为[J]. 航空材料学报, 2012, 32(3): 5-9. GUO Y J, WANG C F, LI J X, et al. Investigation of hydrogen diffusion in secondary hardening steel by means of thermal desorption spectrometry[J]. Journal of Aeronautical Materials, 2012, 32(3): 5-9.
[27] CHAPETTI M D, TAGAWA T, MIYATA T. Ultra-long cycle fatigue of high-strength carbon steels part Ⅱ: estimations of fatigue limit for failure from internal inclusions[J]. Materials Science and Engineering:A, 2003, 356(1-2): 236-244.
[28] MURAKAMI Y. Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions[M]. Amsterdam & Boston: Elsevier, 2002. 11-24.
[29] LIU Y B, YANG Z G, LI Y D, et al. On the formation of GBF of high-strength steels in the very high cycle fatigue regime[J]. Materials Science and Engineering:A, 2008, 497(1-2): 408-415.
[30] LI Y D, CHEN S M, LIU Y B, et al. The characteristics of granular-bright facet in hydrogen pre-charged and uncharged high strength steels in the very high cycle fatigue regime[J]. Journal of Materials Science, 2010, 45(3): 831-841.
[31] NARITA N, SHIGA T, HIGASHIDA K. Crack-impurity interactions and their role in the embrittlement of Fe alloy crystals charged with light elements[J]. Materials Science and Engineering:A, 1994, 176(1-2): 203-209.ff
[1] 王昕, 尹树春, 贺磊, 王社斌. 0.05C-0.3Si-2.0Mn-xCe系钢液的洁净度与夹杂物变性行为[J]. 材料工程, 2013, 0(3): 42-50.
[2] 梁国俐, 武会宾, 杨善武, 刘学利. Mg处理石油储罐用钢大线能量焊接性能研究[J]. 材料工程, 2012, 0(10): 68-72.
[3] 刘昆鹏, 有移亮, 张珊, 张峥. 50CrVA扭杆断裂原因分析[J]. 材料工程, 2010, 0(8): 5-7,11.
[4] 薛红前, 杨斌堂, C. Bathias. 高频载荷下高强钢的超高周疲劳及热耗散研究[J]. 材料工程, 2009, 0(3): 49-53.
[5] 曹国良, 李国明, 常万顺, 陈珊, 陈学群. 脱氧对碳钢耐点蚀性能的影响[J]. 材料工程, 2009, 0(11): 27-30,35.
[6] 廖舒纶, 张立文, 岳重祥, 郭书奇, 甄玉. GCr15热变形行为与流变应力模型的研究[J]. 材料工程, 2008, 0(4): 8-10,14.
[7] 郭峰, 李杰, 李志, 王俊丽, 古立新, 王瑞. 单轴拉伸下AerMet100钢中稀土夹杂物开裂过程的原位观察[J]. 材料工程, 2008, 0(12): 24-29.
[8] 周晓明, 汪武祥, 唐定中, 颜鸣皋. SiO2在FGH96高温合金中的遗传特征[J]. 材料工程, 2006, 0(11): 53-56,61.
[9] 曾燕屏, 张麦仓, 董建新, 张丽娜, 谢锡善. 镍基粉末高温合金中夹杂物导致裂纹萌生和扩展行为的研究[J]. 材料工程, 2005, 0(3): 10-13,17.
[10] 齐宝森, 姚新, 王成国, 徐英. 高能球磨法制备磨球表面铝涂层的研究[J]. 材料工程, 2001, 0(3): 39-41.
[11] 惠卫军, 李荣, 翁宇庆. 稀土对18Ni(350)马氏体时效钢韧塑性的影响[J]. 材料工程, 1996, 0(2): 19-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn