Please wait a minute...
 
材料工程  2014, Vol. 0 Issue (4): 13-17,25    DOI: 10.3969/j.issn.1001-4381.2014.04.003
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
NiCuNbCr焊料Ti3Al/GH4169合金氩弧焊接头的组织及性能
陈冰清, 熊华平, 郭绍庆, 张学军, 孙兵兵, 唐思熠
北京航空材料研究院 焊接及锻压工艺研究室, 北京 100095
Microstructure and Mechanical Properties of Ti3Al/GH4169 Superalloy Joints Arc Welded with NiCuNbCr Filler Alloy
CHEN Bing-qing, XIONG Hua-ping, GUO Shao-qing, ZHANG Xue-jun, SUN Bing-bing, TANG Si-yi
Laboratory of Welding and Forging, Beijing Institute of Aeronautical Materials, Beijing 100095, China
全文: PDF(1738 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用钨极氩弧焊方法,使用自行设计制备的NiCuNbCr合金作为焊料,实现Ti3Al基合金与GH4169高温合金异种材料之间的焊接。采用扫描电镜(SEM)及能谱分析(XEDS)等方法对接头横截面的微观组织进行分析。结果表明:GH4169/焊缝界面以及焊缝均主要由Ni元素的固溶体组成,其中固溶了Cu,Fe,Cr,Nb几种元素;而焊缝/Ti3Al界面分为3层组织,其相组成从Ti3Al母材到焊缝方向依次为:固溶了Ni和Cu元素的Ti2AlNb相、Al(Ni,Cu)2Ti金属间化合物及(Nb,Ti,Mo)固溶体;(Ni,Nb,Cr)及Ni(Cu,Ti)固溶体;Ni的固溶体,固溶元素为Cu,Nb和Cr。接头的平均室温抗拉强度为140.7MPa。拉伸试样断裂于被焊Ti3Al母材表面的扩散反应层,它主要由固溶了Ni和Cu元素的Ti2AlNb相与Al(Ni,Cu)2Ti金属间化合物组成,该界面是Ti3Al/GH4169接头的薄弱环节。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈冰清
熊华平
郭绍庆
张学军
孙兵兵
唐思熠
关键词 Ti3Al基合金Ni基高温合金氩弧焊微观组织力学性能    
Abstract:With a NiCuNbCr alloy as filler material, dissimilar welding of a Ti3Al-based alloy and a Ni-based superalloy (GH4169) was successfully carried out using gas tungsten arc (GTA) welding technology. The microstructure evolution along the cross section of the dissimilar joint was analyzed with the scanning electron microscopy (SEM) and X-ray energy dispersive spectroscopy (XEDS) method.The results show that, both the GH4169/weld interface and the weld consist of Ni solid solution, dissolve with several elements of Cu, Fe, Cr and Nb. The weld/Ti3Al interface is composed of three transitional layers. The phase constitutions of the layers from the Ti3Al side to weld are: Ti2AlNb matrix dissolving with Ni and Cu, Al(Ni, Cu)2Ti intermetallics as well as (Nb, Ti, Mo) solid solution; (Ni, Nb, Cr) and Ni(Cu, Ti) solid solution; Ni solid solution, dissolving with Cu, Nb and Cr, respectively. The average room-temperature tensile strength of the joints is 140.7MPa. The fracture occurrs at the diffusion reaction layer at the surface of the joined Ti3Al base alloy, which is mainly composed of Ti2AlNb matrix dissolving with Ni and Cu as well as Al(Ni, Cu)2Ti intermetallics. This interface should be the weak link of the Ti3Al/GH4169 joint.
Key wordsTi3Al-based alloy    Ni-based superalloy    arc welding    microstructure    mechanical property
收稿日期: 2014-01-06     
1:  TG442  
作者简介: 陈冰清(1984- ),女,博士,工程师,主要从事航空新材料的焊接技术研究,联系地址:北京市81信箱20分箱(100095),E-mail:hwtkjcbq1984@163.com
引用本文:   
陈冰清, 熊华平, 郭绍庆, 张学军, 孙兵兵, 唐思熠. NiCuNbCr焊料Ti3Al/GH4169合金氩弧焊接头的组织及性能[J]. 材料工程, 2014, 0(4): 13-17,25.
CHEN Bing-qing, XIONG Hua-ping, GUO Shao-qing, ZHANG Xue-jun, SUN Bing-bing, TANG Si-yi. Microstructure and Mechanical Properties of Ti3Al/GH4169 Superalloy Joints Arc Welded with NiCuNbCr Filler Alloy. Journal of Materials Engineering, 2014, 0(4): 13-17,25.
链接本文:  
http://jme.biam.ac.cn/jme/CN/10.3969/j.issn.1001-4381.2014.04.003      或      http://jme.biam.ac.cn/jme/CN/Y2014/V0/I4/13
[1] DJANARTHANY S, VIALA J C, BOUIX J. An overview of monolithic titanium aluminide based on Ti3Al and TiAl[J]. Materials Chemistry and Physics,2001,72(3):301-319.
[2] 熊华平,毛建英,陈冰清,等. 航空航天轻质高温结构材料的焊接技术研究进展[J]. 材料工程,2013,(10):1-12. XIONG H P, MAO J Y, CHEN B Q, et al. Research advances on the welding and joining technologies of light high-temperature structural materials in aerospace field[J]. Journal of Materials Engineering,2013,(10):1-12.
[3] 刘博,武英,周朝霞,等. Ti-23Al-14Nb-3V合金氩弧焊接头的显微组织及其力学性能[J]. 材料科学与工艺,1997,5(1):45. LIU B, WU Y, ZHOU C X, et al. Microstructure and mechanical properties of Ti-23Al-14Nb-3V alloy argon-arc welding joints[J]. Material Science and Technology,1997,5(1):45.
[4] WU A P, ZOU G S, REN J L, et al. Microstructures and mechanical properties of Ti-24Al-17Nb (at.%) laser beam welding joints[J]. Intermetallics,2002,10(7):647-652.
[5] 熊华平,李红,毛唯,等. 国际钎焊技术最新进展[J]. 焊接学报,2011,32(5):108-111. [KG*2]XIONG H P, LI H, MAO W, et al. Reviews on latest advances in brazing and soldering technologies[J]. Transactions of the China Welding Institution,2011,32(5):108-111.
[6] DAVID S A, HORTON J A, GOODWIN G M. Weldability and microstructure of a titanium aluminide[J]. Welding Journal,1990,69(4):133-140.
[7] 李艳, 刘卫红, 袁鸿,等. Ti3Al基合金熔化用填充材料[P]. 中国专利:ZL 200610055865.3,2010-09-08.
[8] TAN L J, YAO Z K, ZHOU W, et al. Microstructure and properties of electron beam welded joint of Ti-22Al-25Nb/TC11[J]. Aerospace Science and Technology,2010,14(5):302-306.
[9] ZHANG H T, HE P, FENG J C, et al. Interfacial microstructure and strength of the dissimilar joint Ti3Al/TC4 welded by the electron beam process[J]. Materials Science and Engineering:A,2006,425(1-2):255-259.
[10] MIEDEMA A R, BOER F R D E, BOOM R, et al. Tables for the heat of solution of liquid metals in liquid metal solvents[J].Calphad,1977,(1):353-359.
[11] KEYZER J D, CACCIAMANI G, DUPIN N, et al. Thermodynamic modeling and optimization of the Fe-Ni-Ti system[J].Calphad,2009,(33):109-123.
[12] LI H M, SUN D Q, GU X Y, et al. Effects of the thickness of Cu filler metal on the microstructure and properties of laser-welded TiNi alloy and stainless steel joint[J]. Materials and Design,2013,50:342-350.
[13] WEI P S,CHUNG F K. Unsteady marangoni flow in a molten pool when welding dissimilar metals[J]. Metallurgical and Materials Transactions B,2000,31(6):1387-1403.
[14] 陈波,熊华平,毛唯,等. 采用Ti-Zr-Cu-Ni真空钎焊Ti3Al/Ti3Al和Ti3Al/GH536接头组织及性能[J]. 航空材料学报,2010,30(5):35-38. CHEN B,XIONG H P,MAO W,et al. Microstructures and properties of Ti3Al/Ti3Al and Ti3Al/GH536 joints using Ti-Zr-Cu-Ni brazing filler[J]. Journal of Aeronautical Materials,2010,30(5):35-38.
[15] CAO J X,BAI F,LI Z X. High temperature low cycle fatigue behavior of titanium aluminide Ti-24Al-15Nb-1Mo alloy[J]. Materials Science and Engineering:A,2006,424(1-2):47-52.
[16] VILLARS P,PRINCE A,OKAMOTO H. Handbook of Ternary Alloy Phase Diagrams[M]. Materials Park,OH:ASM Inter-national,1995.
[17] SHIUE R K,WU S K,CHEB S Y. Infrared brazing of TiAl intermetallic using BAg-8 braze alloy[J]. Acta Materialia,2003,51(7):1991-2004.
[18] 周媛,熊华平,陈波,等. 以铜和Cu-Ti作为中间层的TiAl/GH3536扩散焊[J]. 焊接学报,2012,33(2):17-20. ZHOU Y,XIONG H P,CHEN B,et al. Diffusion bonding of TiAl and GH3536 superalloy with Cu and Cu-Ti as interlayer[J]. Transactions of the China Welding Institution,2012,33(2):17-20.
[19] TETSUI T. Effects of brazing filler on properties of brazed joints between TiAl and metallic materials[J]. Intermetallics,2001,9(3):253-260.
[1] 林翠, 赵晴, 文庆杰. TC1钛合金的腐蚀加工及其对基体性能影响[J]. 材料工程, 2015, 43(7): 48-55.
[2] 李龙, 祝志超, 张心金, 刘会云. 利用控轧控冷技术开发热轧不锈钢复合板的实验研究[J]. 材料工程, 2015, 43(7): 62-67.
[3] 江陆, 孙新军, 李昭东, 雍岐龙, 王长军. 两相区回火温度对Mn-Mo系微合金钢亚稳奥氏体形成及力学性能的影响[J]. 材料工程, 2015, 43(5): 1-7.
[4] 万同, 杨光瑞, 张婕, 王彪. 柠檬酸醚酯增塑剂的合成及增塑聚乳酸[J]. 材料工程, 2015, 43(5): 67-74.
[5] 刘铭, 汝继刚, 臧金鑫, 张坤, 何维维, 王亮, 陈高红. 新型Al-Zn-Mg-Cu铝合金热稳定性研究[J]. 材料工程, 2015, 43(4): 13-18.
[6] 马彦, 陈朝辉. 1800℃热处理对PIP法C/SiC复合材料结构和性能的影响[J]. 材料工程, 2015, 43(4): 98-101.
[7] 傅田, 李文亚, 杨夏炜, 李锦锋, 高大路. 搅拌摩擦点焊技术及其研究现状[J]. 材料工程, 2015, 43(4): 102-114.
[8] 彭建, 彭毅, 韩韡, 潘复生. 挤压温度对Mg-2Zn-Mn-0.5Nd镁合金组织和性能的影响[J]. 材料工程, 2015, 43(3): 23-27.
[9] 张同环, 周仕学, 牛海丽, 肖成柱, 王乃飞. 碳助磨制备纳米镁铝储氢合金的结构及储氢性能研究[J]. 材料工程, 2015, 43(3): 48-53.
[10] 刘鹏, 李士凯, 张元彬, 刘燕. 非晶增强铝基复合材料的微观结构及腐蚀性能[J]. 材料工程, 2015, 43(3): 67-71.
[11] 刘正, 董阳, 毛萍莉, 于金程. 轧制AZ31镁合金板材(4mm)动态压缩性能与失效行为[J]. 材料工程, 2015, 43(2): 61-66.
[12] 李万青, 魏红梅, 何鹏, 高丽娇, 林铁松, 李小强, 赫兰春. Ti3Al和Ti2AlNb合金扩散连接界面的组织及力学性能[J]. 材料工程, 2015, 43(1): 37-43.
[13] 王艳晶, 柳乐, 宋玫锦. Y微合金化高铌TiAl基合金微观组织研究[J]. 材料工程, 2015, 43(1): 66-71.
[14] 王洁, 聂宝华, 蔡成, 张峥. 加氢反应器环境服役的2.25Cr1Mo钢性能退化研究[J]. 材料工程, 2015, 43(1): 82-88.
[15] 杜红燕, 李亚江. AZ31/7005异种材料填丝GTAW焊接接头的组织与性能[J]. 材料工程, 2014, 0(9): 14-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn