Please wait a minute...
 
材料工程  2014, Vol. 0 Issue (9): 20-25    DOI: 10.11868/j.issn.1001-4381.2014.09.004
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
Q235钢基体LZAS微晶玻璃/Y-TZP梯度涂层接触应力的数值模拟
龚伟1,2, 周黎明2, 王恩泽1,3, 白朝中2
1. 中国工程物理研究院 激光聚变研究中心, 四川 绵阳 621900;
2. 西南科技大学 制造科学与工程学院, 四川 绵阳 621010;
3. 西南科技大学 材料科学与工程学院, 四川 绵阳 621010
Numerical Simulation of Contact Stress on Y-TZP/LZAS Glass-ceramic Gradient Coatings on Q235 Steel Substrate
GONG Wei1,2, ZHOU Li-ming2, WANG En-ze1,3, BAI Chao-zhong2
1. Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, Sichuan, China;
2. School of Manufacturing Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China;
3. School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
全文: PDF(2146 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 运用有限元软件对Hertz接触状态下Q235钢基体LZAS微晶玻璃/Y-TZP梯度涂层的接触应力进行了分析。讨论了梯度层厚度、梯度层层数和物性参数渐变方式(3Y-TZP体积组分差)对涂层接触应力分布情况的影响。结果表明:涂层的径向接触应力和Mises应力的最大值位于接触中心处,最大剪切应力则位于涂层表层下方靠近接触中心处;涂层表面径向应力、整体最大Mises应力和涂层/基体界面剪应力与涂层的层数、厚度以及3Y-TZP体积组分差均有密切关系。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
龚伟
周黎明
王恩泽
白朝中
关键词 功能梯度涂层接触应力有限元分析应力分布    
Abstract:The contact stress of the Y-TZP/ LZAS glass-ceramic gradient coatings on Q235 steel substrate under Hertz contact conditions was investigated by using finite element software. The effects of coating thickness, the number of graded layers and graded modes of physics properties (the volume difference of 3Y-TZP in various gradient layers) on the distributions of contact stress were discussed. The results show that the maximum radial contact stress and Mises stress of the coating occur at the contact center, and the maximum shear stress lies beneath the outer layers of coating, and near the contact center. The number of layer, the coating thickness, and the volume difference of 3Y-TZP in various gradient layers have an important influence on the surface radial stress, Mises stress and the shear stress.
Key wordsfunctionally gradient coating    contact stress    finite element analysis    stress distribution
收稿日期: 2013-10-15     
1:  TB333  
基金资助:四川省教育厅重点项目(10ZA020);四川省科技计划项目(2012GZX0083)
通讯作者: 王恩泽(1962- ),男,博士,教授,从事金属基/陶瓷涂层复合材料、耐磨材料与磨损机理、铸造工艺与铸造合金研究,联系地址:四川省绵阳市青龙大道59号西南科技大学材料科学与工程学院(621010)     E-mail: wangenze@swust.edu.cn
引用本文:   
龚伟, 周黎明, 王恩泽, 白朝中. Q235钢基体LZAS微晶玻璃/Y-TZP梯度涂层接触应力的数值模拟[J]. 材料工程, 2014, 0(9): 20-25.
GONG Wei, ZHOU Li-ming, WANG En-ze, BAI Chao-zhong. Numerical Simulation of Contact Stress on Y-TZP/LZAS Glass-ceramic Gradient Coatings on Q235 Steel Substrate. Journal of Materials Engineering, 2014, 0(9): 20-25.
链接本文:  
http://jme.biam.ac.cn/jme/CN/10.11868/j.issn.1001-4381.2014.09.004      或      http://jme.biam.ac.cn/jme/CN/Y2014/V0/I9/20
[1] 芦玉峰, 楼淼, 邓利蓉, 等. 0Cr18Ni9不锈钢基板BAS系微晶玻璃介质层的研制[J]. 功能材料,2010,41(12):2216-2219.LU Y F, LOU M, DENG L R,et al. Research of dielectric coatings for 0Cr18Ni9 stainless steel substrate prepared by BaO-Al2O3-SiO2 glass-ceramics[J]. Journal of Functional Materials, 2010, 41(12): 2216-2219.
[2] 田鹏, 刘新年, 李争显, 等. 钛合金表面抗氧化玻璃-陶瓷涂层研究进展[J]. 中国陶瓷,2010, 46(4):2-7.TIAN P, LIU X N, LI Z X,et al. Research progress of oxidation-resistant glass-ceramic coatings on titanium alloys[J].China Ceramics,2010, 46(4):2-7.
[3] SEN R, DUTTA S, DAS S K. Evaluation of a glass-ceramic coating for machine tool slides[J]. Wear, 1989, 130(1): 249-260.
[4] 江利, 李植. 金属表面玻璃-陶瓷复合涂层的磨粒磨损特性的研究[J]. 摩擦磨损, 1989, (2):21-26.JIANG L, LI Z. Study of wear resistance performance of glass-ceramic coatings on metal substrate[J]. Friction and Wear, 1989,(2):21-26.
[5] 边洁, 王威强, 管从胜, 等. 梯度功能材料研究的一些进展[J]. 金属热处理,2003, 28(9): 13-19.BIAN J, WANG W Q, GUAN C S,et al. Review of some research progress of functionally graded materials[J].Heat Treatment of Metals,2003, 28(9): 13-19.
[6] SURESH S. Graded materials for resistance to contact deformation and damage[J]. Science, 2001, 292(5526): 2447-2451.
[7] LU A X, KE Z B, XIAO Z H, et al. Effect of heat-treatment condition on crystallization behavior and thermal expansion coefficient of Li2O-ZnO-Al2O3-SiO2-P2O5 glass-ceramics[J]. Journal of Non-Crystalline Solid, 2007, 35(3): 2692-2697.
[8] ZHOU L M, GONG W, WANG E Z. Analysis on the residual stress in functionally gradient Fe360/glass-ceramic coatings[A].The 2nd International Conference on Key Engineering Materials and Computer Science[C]. Zurich: Trans Tech Publications Ltd, 2013. 215-220.
[9] ZHANG X C, XU B S, WANG H D, et al. Hertzian contact response of single-layer, functionally graded and sandwich coatings[J]. Materials & Design, 2007, 28(1): 47-54.
[10] 刘铁军, 汪越胜. 功能梯度材料涂层半空间的轴对称光滑接触问题[J]. 固体力学学报, 2007, 28(1): 49-54. LIU T J, WANG Y S. Axisymmetrical smooth contact problem of functionally gradded coated half-space[J]. Acta Mechanica Solida Sinica, 2007, 28(1): 49-54.
[11] JOHNSON K L. 接触力学[M]. 徐秉业, 译. 北京: 高等教育出版社, 1992. JOHNSON K L. Contact Mechanics[M]. Translated by XU B Y. Beijing: Higher Education Press,1992.
[12] 孙静. 氧化锆基复合陶瓷纺织剪刀材料的研制及其应用基础研究[D]. 济南: 山东大学, 2005. SUN J. Study on fabrication and application fundamentals of zirconia matrix composite ceramic materials for spinning and weaving scissors[D].Jinan: Shandong University, 2005.
[13] 程西云, 何俊, 王如团. 梯度涂层结构设计制备及应用研究现状[J]. 润滑与密封, 2010, 35(11): 111-114. CHENG X Y, HE J, WANG R T. The structure design of function graded material coating and its application development[J].Lubrication Engineering, 2010, 35 (11): 111-114.
[14] 刘红兵, 陶杰, 张平则, 等. 功能梯度Al2O3涂层残余应力分析 [J]. 机械工程学报, 2008, 44(8): 26-32. LIU H B, TAO J, ZHANG P Z,et al. Simulation of residual stresses in functionally gradient Al2O3 coatings[J].Chinese Journal of Mechanical Engineering, 2008, 44(8): 26-32.
[15] 楼小玲, 柴国钟, 鲍雨梅, 等. 基于Hertz接触理论的涂层界面应力分析[J]. 浙江工业大学学报, 2006, 34(5): 563-566. LOU X L, CHAI G Z, BAO Y M,et al. Analysis of interfacial stress on coatings based upon Hertz contact theory[J].Journal of Zhejiang University of Technology, 2006,34(5): 563-566.
[16] DIAO D F, SAWAKI Y, SUZUKI H. Effect of interlayer on maximum contact stresses of hard coating under sliding contact[J]. Surface and Coatings Technology, 1996, 86-87(2):480-485.
[17] 陈东, 谢华, 陈小文. TiN涂层/基体接触应力的有限元分析 [J]. 材料研究与应用, 2010, 4(3): 192-198. CHEN D, XIE H, CHEN X W. Finite element analysis of the contact stress of TiN coating/substrate[J]. Materials Research and Application, 2010, 4(3): 192-198.
[1] 石晓朋, 李曙林, 常飞, 卞栋梁, 尹俊杰. 复合材料加筋壁板低速冲击响应与冲击能量关系[J]. 材料工程, 2015, 43(4): 53-58.
[2] 宋川, 刘建华, 彭金方, 张林, 周琰, 朱旻昊. 接触应力对车轴钢旋转弯曲微动疲劳寿命的影响[J]. 材料工程, 2014, 0(2): 34-38.
[3] 乔印虎, 韩江, 张春燕, 陈杰平. 智能复合材料风力机叶片设计与有限元分析[J]. 材料工程, 2013, 0(5): 57-61.
[4] 郭昉, 张保国, 田欣利, 王健全, 李富强, 毛亚涛. 氮化硅陶瓷柱塞套油孔的超声振动加工[J]. 材料工程, 2013, 0(3): 22-26.
[5] 范世通, 汤海波, 张述泉, 王华明. 梯度复合材料热应力影响因素正交有限元分析[J]. 材料工程, 2012, 0(8): 1-4.
[6] 陈高升, 张连鸿, 栗付平, 覃海鹰, 李满福. 球面层状弹性轴承结构对其力学行为影响的有限元分析[J]. 材料工程, 2009, 0(10): 15-19.
[7] 王远坤, 程长征, 胡宗军, 牛忠荣. 边界元法分析功能梯度涂层材料[J]. 材料工程, 2008, 0(4): 61-64.
[8] 郭运强, 张克实, 耿小亮, 刘芹, 秦亮. 基体性质对含涂层系统压痕响应的影响[J]. 材料工程, 2006, 0(6): 24-27.
[9] 何小东, 张建勋, 巩水利, 冯耀荣. TC4钛合金激光焊接应力变形有限元分析[J]. 材料工程, 2005, 0(8): 39-42,63.
[10] 王宇飞, 杨振国, 郭宝山. SHS-离心法制备陶瓷复合管道热应力的有限元分析[J]. 材料工程, 2005, 0(2): 6-9.
[11] 宋凯, 唐继红, 钟万里, 刘伟成, 任吉林. 铁磁构件应力集中的有限元分析和磁记忆检测[J]. 材料工程, 2004, 0(4): 40-42,48.
[12] 马壮, 吕广庶, 王富耻, 王全胜. 等离子喷涂沉积率对梯度涂层结合强度影响研究[J]. 材料工程, 2001, 0(5): 34-36.
[13] 许庆彦, 陈玉勇, 李庆春. 一种多孔铝合金制备技术的研究[J]. 材料工程, 1998, 0(3): 32-35,38.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn