Please wait a minute...
 
材料工程  2015, Vol. 43 Issue (3): 60-66    DOI: 10.11868/j.issn.1001-4381.2015.03.011
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
不同应变率下纳米多晶Cu/Ni薄膜变形行为的分子动力学模拟
成聪1,2, 陈尚达1,2, 吴勇芝1,2, 黄鸿翔1,2
1. 湘潭大学 材料与光电物理学院, 湖南 湘潭 411105;
2. 湘潭大学 低维材料及其应用技术教育部重点实验室, 湖南 湘潭 411105
Molecular Dynamics Simulations of Deformation Behaviors for Nanocrystalline Cu/Ni Films Under Different Strain Rates
CHENG Cong1,2, CHEN Shang-da1,2, WU Yong-zhi1,2, HUANG Hong-xiang1,2
1. Faculty of Materials, Optoelectronics and Physics, Xiangtan University, Xiangtan 411105, Hunan, China;
2. Key Laboratory of Low Dimensional Materials & Application Technology(Ministry of Education), Xiangtan University, Xiangtan 411105, Hunan, China
全文: PDF(6133 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 用分子动力学方法模拟了纳米多晶Cu/Ni薄膜在不同应变率下进行应变加载时的变形行为与力学性能。结果表明:Cu/Ni薄膜在较高的应变率加载情况下具有较高的屈服极限和应变率敏感性(m)。应变率为108s-1时Cu/Ni多层膜的界面上产生孔洞,而应变率为1010s-1时纳米多晶Cu薄膜出现碎裂。在较高的应变率加载条件下,Cu,Ni薄膜中FCC,HCP,OTHER原子团分数变化都很显著,而较小应变率时只有Cu薄膜的结构变化明显。模拟结果还表明,应变率增加有利于堆垛层错的形成,但应变率超过某一值时无序原子团增加会阻碍堆垛层错原子团的生长。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
成聪
陈尚达
吴勇芝
黄鸿翔
关键词 分子动力学纳米多晶Cu/Ni薄膜应变率    
Abstract:Molecular dynamics simulations are carried out to investigate the deformation behaviors and mechanical properties of nanocrystalline Cu/Ni films under conditions of tensile strain at different strain rates. The results indicate that the Cu/Ni films have higher yield strength and higher strain rate sensitivity(m)at the higher strain rate. The nucleation of voids in Cu/Ni multilayers' interface is observed at a strain rate of 108s-1, whereas spallation in nanocrystalline Cu films is appeared at a strain rate of 1010s-1.For the higher strain rate loading conditions, the FCC, HCP, and OTHER atomic groups are changed significantly both in Cu and Ni films. However, striking structural changes are found only in the Cu films under conditions of tensile strain at lower strain rate. The simulation results show that increasing strain rates are benefit to the formation of HCP structure, while if the strain rates exceed a certain value, the increasing disorder atomic groups may impede the growth of HCP atomic groups.
Key wordsmolecular dynamics    nanocrystalline    Cu/Ni film    strain rate
收稿日期: 2013-09-29     
1:  TB303  
基金资助:国家自然科学基金青年基金(10702058)
通讯作者: 陈尚达(1976-),男,博士,副教授,主要从事金属薄膜界面微观结构演化与金属薄膜界面结合性能模拟的研究工作,联系地址:湘潭大学材料与光电物理学院(411105),chensd@xtu.edu.cn     E-mail: chensd@xtu.edu.cn
引用本文:   
成聪, 陈尚达, 吴勇芝, 黄鸿翔. 不同应变率下纳米多晶Cu/Ni薄膜变形行为的分子动力学模拟[J]. 材料工程, 2015, 43(3): 60-66.
CHENG Cong, CHEN Shang-da, WU Yong-zhi, HUANG Hong-xiang. Molecular Dynamics Simulations of Deformation Behaviors for Nanocrystalline Cu/Ni Films Under Different Strain Rates. Journal of Materials Engineering, 2015, 43(3): 60-66.
链接本文:  
http://jme.biam.ac.cn/jme/CN/10.11868/j.issn.1001-4381.2015.03.011      或      http://jme.biam.ac.cn/jme/CN/Y2015/V43/I3/60
[1] ZHU X Y, PAN F, LIU X J, et al. Microstructure and mechanical properties of nanoscale Cu/Ni multilayers[J]. Materials Science and Engineering A, 2010, 527(4-5):1243-1248.
[2] 王涛, 卢子兴, 杨振宇. Cu/Ni多层纳米线力学性能尺寸效应的分子动力学模拟[J]. 计算力学学报, 2011, 28(Suppl):147-151.WANG T, LU Z X, YANG Z Y, et al. Size effects on the mechanical properties of Cu/Ni multi-layer nano-wires:molecular dynamics simulation[J]. Chinese Journal of Computational Mechanics, 2011, 28(Suppl):147-151.
[3] CHELLALI M R, BALOGH Z, BOUCHIKHAOUI H. Triple junction transport and the impact of grain boundary width in nanocrystalline Cu[J]. Nano Letter, 2012, 12(7):3448-3454.
[4] 程东, 严志军, 严立. Cu/Ni多层膜强化机理的分子动力学模拟[J]. 金属学报, 2008, 44(12):1461-1464.CHEN D, YAN Z J, YAN L. Molecular dynamics simulation of strengthening mechanism of Cu/Ni multilayers[J]. Acta Materialia Sinica, 2008, 44(12):1461-1464.
[5] 梁浩, 陈勇梅, 胡文军, 等.不同应变率下MgAIZnY合金的拉伸性能与断口研究[J]. 材料工程, 2012, (1):66-70.LIANG H, CHEN Y M, HU W J, et al. Tensile property and fracture surface for MgAlZnY alloys at different strain rates[J]. Journal of Materials Engineering, 2012, (1):66-70.
[6] LU L, LI S X, LU K. An abnormal strain rate effect on tensile behavior in nanocrystalline copper[J]. Scripta Materialia, 2001, 45(10):1163-1169.
[7] SCHWAIGER R, MOSER B, CHOLLACOOP N, et al. Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel[J]. Acta Materialia, 2003, 51(17):5159-5172.
[8] VO N Q, AVERBACK R S, BELLON P, et al. Yield strength in nanocrystalline Cu during high strain rate deformation[J]. Scripta Materialia, 2009, 61(1):76-79.
[9] DONGARE A M, RAJENDRAN A M, MATTINA B L. Atomic scale simulations of ductile failure micromechanism in nanocrystalline Cu at high strain rates[J]. Physical Review B, 2009, 80(10):4108-4118.
[10] DERLET P M, SWYGENHOVEN H V. Atomic positional disorder in fcc metal nanocrystalline grain boundaries[J]. Physical Review B, 2003, 67(1):4202-4209.
[11] PLIMPTON S J. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995, 117(1):1-19.
[12] MEHL M J, PAPACONSTANTOPOULOS D A. Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations[J]. Physical Review B, 2001, 63(22):4106-4121.
[13] HOOVER W G. Canonical dynamics: equilibrium phase-space distributions[J]. Physical Review A, 1985, 31(3):1695-1697.
[14] KELCHNER C L, PLIMPTON S J, HAMILTON J C. Dislocation nucleation and defect structure during surface indentation[J]. Physical Review B, 1998, 58(17):11085-11088.
[15] WEI Y J, BOWER A F, GAO H J. Enhanced strain-rate sensitivity in fcc nanocrystals due to grain-boundary diffusion and sliding[J]. Scripta Materialia, 2008, 56(8):1741-1752.
[16] KUMAR K S, SWYGENHOVEN H V, SURESH S. Mechanical behavior of nanocrystalline metals and alloys[J]. Scripta Materialia, 2003, 51(19):5743-5774.
[17] WOLF D, YAMAKOV V, PHILLPOT S R, et al. Deformation of nanocrystalline materials by molecular-dynamics simulation: relationship to experiments[J]. Acta Materialia, 2005, 53(1):1-40.
[18] JIA D, RAMESH K T, LU L, et al. Compressive behavior of an electrodeposited nanostructured copper at quasistatic and high strain rates[J]. Scripta Materialia, 2001, 45(5):613-620.
[19] BRINGA E M, CARO A, WANG Y, et al. Ultrahigh strength in nanocrystalline materials under shock loading [J]. Science, 2005, 309(5742):1838-1841.
[20] BRINGA E M, TRAIVIRATANA S, MEYERS M A. Void initiation in fcc metals: Effect of loading orientation and nanocrystalline effects [J]. Acta Materialia, 2010, 58(13):4458-4477.
[21] BRANDL C, DERLET P M, SWYGENHOVEN H V. Strain rates in molecular dynamics simulations of nanocrystalline metals [J]. Philosophical Magazine, 2009, 89(34-36):3465-3475.
[22] ASARO R J, SURESH S. Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins[J]. Acta Materialia, 2005, 53(12):3369-3382.
[23] CARREKER R P, HIBBARD W R. Tensile deformation of high-purity copper as a function of temperature, strain rate, and grain size[J]. Acta Materialia, 1953, 1(6):654-663.
[24] JIANG Z G, LIU X, LI G G, et al. Strain rate sensitivity of a nanocrystalline Cu synthesized by electric brush plating[J]. Appl Phys Lett, 2006, 88(14):3115-3117.
[25] WEI Q. Strain rate effects in the ultrafine grain and nanocrystalline regimes-influence on some constitutive responses [J]. J Mater Sci, 2007, 42(5):1709-1727.
[26] TUCKER G J, TIWARI S, ZIMMERMAN J A, et al. Investigating the deformation of nanocrystalline copper with microscale kinematic metrics and molecular dynamics [J]. J Mech Phys Solids, 2012, 60(3):471-486.
[27] TSUZUKI H, BRENICIO P S, RINO J P. Accelerating dislocations to transonic and supersonic speeds in anisotropic metals [J]. Appl Phys Lett, 2008, 92(19):1909-1911.
[28] DONGARE A M, RAJENDRAN A M, LAMATTINA B, et al. Atomic scale studies of spall behavior in nanocrystalline Cu [J]. J Appl Phys, 2010, 108(11):3518-3527.
[29] CHOI Y, PARK Y, HYUN S. Mechanical properties of nanocrystalline copper under thermal load[J]. Physics Letters A, 2012, 376(5):758-762.
[30] MEYERS M A, MISHRA A, BENSON D J. The deformation physics of nanocrystalline metals: experiments analysis and computations[J]. Nanostructured Materials, 2006, 58(4):41-48.
[1] 于超, 任会兰, 宁建国. 钨合金力学性能表征分子动力学模拟[J]. 材料工程, 2014, 0(10): 82-89.
[2] 张彦飞, 兰艳花, 付一政, 赵贵哲, 胡国胜. PA6/POE共混物的分子动力学与介观动力学模拟[J]. 材料工程, 2013, 0(7): 44-49.
[3] 梁浩, 陈勇梅, 胡文军, 丰杰, 谭云. 不同应变率下MgAlZnY合金的拉伸性能与断口研究[J]. 材料工程, 2012, 0(1): 66-70.
[4] 王建伟, 尚新春, 吕国才. bcc-Fe空位浓度对辐照损伤影响的分子动力学模拟[J]. 材料工程, 2011, 0(10): 15-18.
[5] 王扬卫, 马壮, 于晓东, 王富耻, 胡欣. 几种典型材料的动态硬度研究[J]. 材料工程, 2010, 0(9): 62-65,70.
[6] 沙桂英, 刘翠云, 刘腾, 孙晓光, 李根. 添加Y对Mg-3.5%Li合金冲击变形行为的影响[J]. 材料工程, 2010, 0(7): 64-67.
[7] 于杰, 陈敬超, 周晓龙, 叶未, 邹妤, 刘方方. AgSnO2触头材料电弧侵蚀特征的分子动力学模拟[J]. 材料工程, 2010, 0(3): 8-12.
[8] 曹茂盛, 周伟, 雷义龙, 荣吉利. 压缩载荷下碳/环氧复合材料的动力学响应行为[J]. 材料工程, 2008, 0(4): 15-18.
[9] 席力, 乔文, 李明杰, 葛世慧. 纳米多晶La0.7Sr0.3MnO3磁性相变临界行为研究[J]. 材料工程, 2008, 0(10): 72-75.
[10] 赵爱明, 张革新. 超强酸催化巯基乙酸甲酯化的分子动力学模拟[J]. 材料工程, 2008, 0(10): 336-338.
[11] 宁俊生, 范亚夫, 彭秀峰. 镁合金在大变形和高应变率下塑性变形研究进展[J]. 材料工程, 2007, 0(9): 67-73,80.
[12] 刘海燕, 宋卫东, 宁建国. 不同晶粒度钨合金动态力学性能研究[J]. 材料工程, 2007, 0(6): 3-6.
[13] 张修丽, 刘长利, 沙桂英, 刘路. 管线钢的反向应变率效应及剪切形变带[J]. 材料工程, 2006, 0(9): 53-56.
[14] 姚俊臣, 文丽芳, 韩寿波, 马岳. 高应变率下阻尼铝合金的动态力学性能研究[J]. 材料工程, 2006, 0(6): 46-48,67.
[15] 黄德进, 孙紫建, 王礼立. 高聚物材料动态本构关系对PP/PA共混物的应用研究[J]. 材料工程, 2006, 0(3): 3-5,10.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn