Please wait a minute...
 
材料工程  2015, Vol. 43 Issue (3): 72-77    DOI: 10.11868/j.issn.1001-4381.2015.03.013
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
磁响应性TiO2/石墨烯纳米复合材料的合成及光催化性能
张平1, 莫尊理1, 张春1, 韩立娟2, 李政1
1. 西北师范大学 化学化工学院, 兰州 730070;
2. 甘肃省科学院 自然能源研究所, 兰州 730046
Preparation and Photocatalytic Properties of Magnetic Responsive TiO2/Graphene Nanocomposites
ZHANG Ping1, MO Zun-li1, ZHANG Chun1, HAN Li-juan2, LI Zheng1
1. College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China;
2. Natural Energy Institute of Gansu Academy of Sciences, Lanzhou 730046, China
全文: PDF(1790 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 采用乳液插层水解法成功制备了一种层状磁响应性光催化纳米复合材料。首先通过水热法制备磁性Fe3O4纳米粒子,将其超声分散在溶有钛酸丁酯的无水乙醇中,形成钛酸丁酯包裹Fe3O4纳米粒子的微乳液,然后将该微乳液插层于石墨烯中,利用石墨烯的层状结构作为载体形成一种稳定体系,通过控制水解,使TiO2纳米粒子与磁性Fe3O4纳米粒子共同镶嵌于石墨烯层间,形成一种新型的磁响应TiO2/石墨烯纳米复合材料。通过扫描电镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)、震动样品磁强计(VSM)等手段对该复合材料进行表征,并通过模拟太阳光下降解亚甲基蓝(MB)评价复合材料的光催化性能。该复合材料通过磁分离可反复使用,重复使用7次后,对亚甲基蓝的降解率仍大于90%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张平
莫尊理
张春
韩立娟
李政
关键词 磁响应TiO2石墨烯复合材料光催化性能    
Abstract:A new type of magnetic responsive TiO2/graphene nanocomposites with response to external optical and magnetic fields was prepared by using emulsion intercalation hydrolysis method. Magnetic Fe3O4 nanoparticles were synthesized by hydrothermal method and dispersed in ethanol containing tetra-n-butyl titanate through ultrasonic processing to establish a tetra-n-butyl titanate micro-emulsion wrapping Fe3O4 nanoparticles. Then, the micro-emulsion was intercalated into graphene layers by vigorous stirring and a stable system was formed. Thereafter, the Fe3O4 and TiO2 nanoparticles were embedded into the layers of graphene through a controllable hydrolysis process. The morphology and structure of the samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and vibrating sample magnetometer (VSM). The photocatalytic properties of the synthesized nanocomposites were evaluated by degrading methylene blue in simulated solar light. The magnetic responsive TiO2/graphene nanocomposites exhibit excellent photocatalytic performance, and can be used repeatedly after the magnetic separation. The removal rate of methylene blue still maintains more than 90% even after repeated use for 7 times.
Key wordsmagnetic response    titanium dioxide    graphene    composite    photocatalytic performance
收稿日期: 2013-12-19     
1:  TB33  
基金资助:国家自然科学基金项目(51262027);甘肃省科技支撑计划项目(1104GKCA019);甘肃省战略性新兴产业和产业技术研究与开发专项项目(甘发改高技[2012]1738);甘肃省自然科学基金项目(1010RJZA023)
通讯作者: 莫尊理(1963—),男,教授,博士,从事纳米复合材料研究,联系地址:兰州西北师范大学化学化工学院(730070),mozlnwnu2011@163.com     E-mail: mozlnwnu2011@163.com
引用本文:   
张平, 莫尊理, 张春, 韩立娟, 李政. 磁响应性TiO2/石墨烯纳米复合材料的合成及光催化性能[J]. 材料工程, 2015, 43(3): 72-77.
ZHANG Ping, MO Zun-li, ZHANG Chun, HAN Li-juan, LI Zheng. Preparation and Photocatalytic Properties of Magnetic Responsive TiO2/Graphene Nanocomposites. Journal of Materials Engineering, 2015, 43(3): 72-77.
链接本文:  
http://jme.biam.ac.cn/jme/CN/10.11868/j.issn.1001-4381.2015.03.013      或      http://jme.biam.ac.cn/jme/CN/Y2015/V43/I3/72
[1] ASAHI R, MORIKAWA T, OHWAKI T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science, 2001, 293(5528): 269-271.
[2] LIANG C Y, UCHYTIL P, PETRYCHKOVYCH R, et al. A comparison on gas separation between PES (polyethersulfone)/MMT (Na-montmorillonite) and PES/TiO2 mixed matrix membranes[J]. Separation and Purification Technology, 2012, 92(1): 57-63..
[3] ZHANG B, ZHANG J, CHEN F. Preparation and characterization of magnetic TiO2/ZnFe2O4 photocatalysts by a sol-gel method[J]. Research on Chemical Intermediates, 2008, 34(4): 375-380.
[4] 霍莉, 丁克强, 常青云, 等. Fe3+ 掺杂对TiO2光催化氧化甲醇的影响[J]. 河北师范大学学报, 2005, 29(4): 372-375.HUO Li, DING Ke-qiang, CHANG Qing-yun, et al. Influence of Fe3+ doping on the photocatalytic activities of TiO2 for oxidation of methanol[J]. Journal of Hebei Normal University, 2005, 29(4): 372-375.
[5] 胡开文. 碳纳米管负载TiO2光催化剂制备与活性研究[J]. 湖北工业大学学报, 2009, 24(4): 22-24.HU Kai-wen. Synthesis, characterization and photocatalytic property of carbon nanotube supported TiO2[J]. Journal of Hubei University of Technology, 2009, 24(4): 22-24.
[6] 吴玉程, 刘晓璐, 叶敏, 等. 碳纳米管负载纳米TiO2复合材料的制备及其性能[J]. 物理化学学报, 2008, 24(1): 97-102.WU Yu-cheng, LIU Xiao-lu, YE Min, et al. Preparation and properties of carbon nanotube-TiO2 nanocomposites[J]. Acta Physico-Chimica Sinica, 2008, 24(1): 97-102.
[7] YU H, QUAN X, CHEN S, et al. TiO2-multiwalled carbon nanotube heterojunction arrays and their charge separation capability[J]. The Journal of Physical Chemistry C, 2007, 111(35): 12987-12991.
[8] WANG W, PHILIPPE S, PHILIPPE K, et al. Visible light photodegradation of phenol on MWNT-TiO2 composite catalysts prepared by a modified sol-gel method[J]. Journal of Molecular Catalysis A: Chemical, 2005, 235(1): 194-199.
[9] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
[10] 张晓艳, 李浩鹏, 崔晓莉. TiO2/石墨烯复合材料的合成及光催化分解水产氢活性[J]. 无机化学学报, 2009, 25(11): 1903-1907. ZHANG Xiao-yan, LI Hao-peng, CUI Xiao-li. Preparation and photocatalytic activity for hydrogen evolution of TiO2/graphene sheets composite[J]. Chinese Journal of Inorganic Chemistry, 2009, 25(11): 1903-1907.
[11] ZHANG H, LV X, LI Y, et al. P25-graphene composite as a high performance photocatalyst[J]. ACS Nano, 2009, 4(1): 380-386.
[12] WU J C S, CHEN C H. A visible-light response vanadium-doped titania nanocatalyst by sol-gel method[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 163(3): 509-515.
[13] CHOI W, TERMIN A, HOFFMANN M R. The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics[J]. The Journal of Physical Chemistry, 1994, 98(51): 13669-13679.
[14] LI L, LIU C, LIU Y. Study on activities of vanadium (IV/V) doped TiO2 (R) nanorods induced by UV and visible light[J]. Materials Chemistry and Physics, 2009, 113(2): 551-557.
[15] CHANG S, LIU W. Surface doping is more beneficial than bulk doping to the photocatalytic activity of vanadium-doped TiO2[J]. Applied Catalysis B: Environmental, 2011, 101(3): 333-342.
[16] NNHAR M S, HASEGAWA K, KAGAYA S. Photocatalytic degradation of phenol by visible light-responsive iron-doped TiO2 and spontaneous sedimentation of the TiO2 particles[J]. Chemosphere, 2006, 65(11): 1976-1982.
[17] LAZAU C, SFIRLOAGA P, ORHA C, et al. Development of a novel fast-hydrothermal method for synthesis of Ag-doped TiO2 nanocrystals[J]. Materials Letters, 2011, 65(2): 337-339.
[18] VENKATACHALAM N, PALANICHAMY M, MURUGESAN V. Sol-gel preparation and characterization of alkaline earth metal doped nano TiO2: Efficient photocatalytic degradation of 4-chlorophenol[J]. Journal of Molecular Catalysis A: Chemical, 2007, 273(1): 177-185.
[19] YAMASHITA H, HARADA M, MISAKA J, et al. Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO2 catalysts: Fe ion-implanted TiO2[J]. Catalysis Today, 2003, 84(3): 191-196.
[20] YAP P S, LIM T T, LIM M, et al. Synthesis and characterization of nitrogen-doped TiO2/AC composite for the adsorption-photocatalytic degradation of aqueous bisphenol-A using solar light[J]. Catalysis Today, 2010, 151(1): 8-13.
[21] YU H, LEE S C, YU J, et al. Photocatalytic activity of dispersed TiO2 particles deposited on glass fibers[J]. Journal of Molecular Catalysis A: Chemical, 2006, 246(1): 206-211.
[22] MAHALAKSHMI M, PRIYA S V, ARABINDOO B, et al. Photocatalytic degradation of aqueous propoxur solution using TiO2 and Hβ zeolite-supported TiO2[J]. Journal of Hazardous Materials, 2009, 161(1): 336-343.
[23] 甘永平, 秦怀鹏, 黄辉, 等. 金红石TiO2-石墨烯复合材料的制备及其光催化性能[J].物理化学学报, 2013, 29 (2): 403-410. GAN Yong-ping, QIN Huai-peng, HUANG Hui, et al. Preparation and photocatalytic activity of rutile TiO2-graphene composites[J]. Acta Physico-Chimica Sinica, 2013, 29 (2), 403-410.
[24] HUMMERS J W S, OffEMAN R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80(6): 1339.
[25] 莫尊理, 张平, 陈红, 等. 乳液插层法制备 PMMA/Nd(OH)3/MMT 三相纳米复合材料及表征[J]. 功能材料, 2006, 37(9): 1473-1476. MO Zun-li, ZHANG Ping, CHEN Hong, et al. Synthesis of PMMA/Nd(OH)3/MMT nanocomposite by emulsion inserted method and its characterization[J]. J Funct Mater, 2006, 37(9): 1473-1476.
[26] MO Z L, ZHANG P, ZUO D D, et al. Synthesis and characterization of polyaniline nanorods/Ce(OH)3- Pr2O3/montmorillonite composites through reverse micelle template[J]. Materials Research Bulletin, 2008, 43(7): 1664-1669.
[27] AKPAN U G, HAMEED B H. The advancements in sol-gel method of doped-TiO2 photocatalysts[J]. Applied Catalysis A: General, 2010, 375(1): 1-11.
[28] XU A W, GAO Y, LIU H Q. The preparation, characterization, and their photocatalytic activities of rare-earth-doped TiO2 nanoparticles[J]. Journal of Catalysis, 2002, 207(2): 151-157.
[29] SHAH S I, LI W, HUANG C P, et al. Study of Nd3+, Pd2+, Pt4+, and Fe3+ dopant effect on photoreactivity of TiO2 nanoparticles[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(2): 6482-6486.
[1] 刘伟, 曹腊梅, 王岭, 徐彩虹, 益小苏. RTM成型工艺对Cf/SiBCN陶瓷基复合材料性能的影响[J]. 材料工程, 2015, 43(6): 1-6.
[2] 李敬勇, 刘涛, 郭宇文. 搅拌摩擦加工铝基复合材料的高温摩擦磨损性能[J]. 材料工程, 2015, 43(6): 21-25.
[3] 倪楠楠, 温月芳, 贺德龙, 益小苏, 郭妙才, 许亚洪. 结构-阻尼复合材料研究进展[J]. 材料工程, 2015, 43(6): 90-101.
[4] 张勇, 谢卫红, 刘宏伟, 张峰. 聚氨酯蜂窝纸板动力学性能及其本构模型[J]. 材料工程, 2015, 43(5): 27-32.
[5] 李雪爱, 王春生, 韩喜江. 原位化学沉淀法制备Fe3O4-石墨复合材料的吸波性能[J]. 材料工程, 2015, 43(5): 44-49.
[6] 冯宇, 何宇廷, 安涛, 崔荣洪, 邵青, 范超华. 湿热环境对航空复合材料加筋板压缩屈曲和后屈曲性能的影响[J]. 材料工程, 2015, 43(5): 81-88.
[7] 董慧民, 安学锋, 益小苏, 闫丽, 苏正涛, 包建文. 纤维增强聚合物基复合材料低速冲击研究进展[J]. 材料工程, 2015, 43(5): 89-100.
[8] 石晓朋, 李曙林, 常飞, 卞栋梁, 尹俊杰. 复合材料加筋壁板低速冲击响应与冲击能量关系[J]. 材料工程, 2015, 43(4): 53-58.
[9] 马彦, 陈朝辉. 1800℃热处理对PIP法C/SiC复合材料结构和性能的影响[J]. 材料工程, 2015, 43(4): 98-101.
[10] 张响, 陈招科, 熊翔. C/C-SiC复合材料表面ZrB2基陶瓷涂层的制备及高温烧结机理[J]. 材料工程, 2015, 43(3): 1-6.
[11] 刘鹏, 李士凯, 张元彬, 刘燕. 非晶增强铝基复合材料的微观结构及腐蚀性能[J]. 材料工程, 2015, 43(3): 67-71.
[12] 杨文彬, 张丽, 刘菁伟, 刘欢锐, 唐兵华. 石墨烯复合材料的制备及应用研究进展[J]. 材料工程, 2015, 43(3): 91-97.
[13] 高禹, 王钊, 陆春, 包建文, 宋恩鹏, 董尚利. 高性能树脂基复合材料典型空天环境下动态力学行为研究现状[J]. 材料工程, 2015, 43(3): 106-112.
[14] 王兵, 谭毅, 施伟, 李佳艳, 尤启凡. 硅蒸镀法制备低密度C/C复合材料表面SiC涂层[J]. 材料工程, 2015, 43(2): 1-6.
[15] 董晓阳, 李勇, 李吻, 张向阳, 肖军. Z-pin增强树脂基复合材料单搭接头弯曲性能[J]. 材料工程, 2015, 43(2): 26-34.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn