Please wait a minute...
材料工程  2015, Vol. 43 Issue (3): 91-97    DOI: 10.11868/j.issn.1001-4381.2015.03.016
  综述 本期目录 | 过刊浏览 | 高级检索 |
杨文彬1,2, 张丽1,2, 刘菁伟1,2, 刘欢锐1,2, 唐兵华3
1. 西南科技大学 四川省非金属复合与功能材料重点实验室-省部共建国家重点实验室培育基地, 四川 绵阳 621010;
2. 西南科技大学 教育部生物质材料工程研究中心, 四川 绵阳 621010;
3. 中国工程物理研究院 电子工程研究所, 四川 绵阳 621900
Progress in Research on Preparation and Application of Graphene Composites
YANG Wen-bin1,2, ZHANG Li1,2, LIU Jing-wei1,2, LIU Huan-rui1,2, TANG Bing-hua3
1. State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China;
2. Engineering Research Center of Biomass Materials (Ministry of Education), Southwest University of Science and Technology, Mianyang 621010, Sichuan, China;
3. Institute of Electronic Engineering, China Academy of Engineering Physics, Mianyang 621900, Sichuan, China
全文: PDF(637 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 石墨烯是碳原子以sp2杂化连接而成的单原子层结构,这一独特的二维结构使得石墨烯具有优异的光电性能、热稳定性以及化学性能。石墨烯复合材料的制备、性能和应用成为近年的研究热点。本文综述了石墨烯复合材料的制备方法,包括石墨烯/高分子复合材料、石墨烯/金属(金属氧化物)复合材料、石墨烯三元复合材料,以及石墨烯复合材料在锂电池、电容器、光伏材料、传感器等方面的应用研究进展,指出了石墨烯复合材料研究的重要方向。
E-mail Alert
关键词 石墨烯复合材料制备应用    
Abstract:Graphene is a single atomic layer structure, which is the thinnest 2-D planar sheet composed of sp2-bonded carbon atoms. The special structure of graphene has excellent properties, such as photoelectric property, heat stability and mechanical properties. There has been increasing attention to preparation, property and application of graphene composites in recent years. In the paper, preparation methods of graphene composites is reviewed, such as graphene/polymer composites, graphene/metal (metal oxide) composites, and ternary composites of graphene. The advances in application of graphene composites are also reviewed, such as in lithium battery, supercapacitors, photovoltaic devices, sensor applications. Furthermore, the important research direction of graphene composites is pointed out.
Key wordsgraphene    composite    preparation    application
收稿日期: 2013-08-27     
1:  O613.71  
通讯作者: 杨文彬(1971-),男,教授,博士,从事石墨烯复合材料的制备与性能研究,联系地址:四川省绵阳市西南科技大学材料学院(621010),     E-mail:
杨文彬, 张丽, 刘菁伟, 刘欢锐, 唐兵华. 石墨烯复合材料的制备及应用研究进展[J]. 材料工程, 2015, 43(3): 91-97.
YANG Wen-bin, ZHANG Li, LIU Jing-wei, LIU Huan-rui, TANG Bing-hua. Progress in Research on Preparation and Application of Graphene Composites. Journal of Materials Engineering, 2015, 43(3): 91-97.
链接本文:      或
[1] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306 (5296): 666-669.
[2] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature, 2005, 438(7065): 197-200.
[3] GEIM A K, NOVOSELOV K S. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183-191.
[4] BALANDIN A A, GHOSH S, BAO W, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008, 8(3): 902-907.
[5] CHAE H K, SIBERIO-PEREZ D Y, KIM J, et al. A route to high surface area, porosity and inclusion of large molecules in crystals[J]. Nature, 2004, 427(6974): 523-527.
[6] LEE C G, WEI X D, KYSAR J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887): 385-388.
[7] KIM H, MIURA Y, MACOSKO C W. Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity[J]. Chem Mater, 2010, 22(11): 3441-3450.
[8] WAKABAYASHI K, PIERRE C, DIKIN D A, et al. Polymer-graphite nanocomposites: effective dispersion and major property enhancement via solid-state shear pulverization[J]. Macromolecules, 2008, 41(6): 1905-1908.
[9] YANG Y, WANG J, ZHANG J, et al. Exfoliated graphite oxide decorated by PDMAEMA chains and polymer particles[J]. Langmuir, 2009, 25(19): 11808-11814.
[10] KIM H, MACOSKO C W. Processing-property relationships of polycarbonate/graphene composites[J]. Polymer, 2009, 50(15): 3797-3809.
[11] LIANG J, HUANG Y, ZHANG L, et al. Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites[J]. Adv Fun Mater, 2009, 19(14): 2297-2302.
[12] ZHAO X, ZHANG Q, CHEN D, et al. Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites[J]. Macromolecules, 2010, 43(5): 2357-2363.
[13] WU Q, XU Y, YAO Z, et al. Supercapacitors based on flexible graphene/polyaniline nanofiber composite films[J]. ACS Nano, 2010, 4(4): 1963-1970.
[14] WANG H, HAO Q, YANG X, et al. Effect of graphene oxide on the properties of its composite with polyaniline[J]. ACS Appl Mate Inter, 2010, 2(3): 821-828.
[15] GLOVER A J, CAI M, OVERDEEP K R, et al. In situ reduction of graphene oxide in polymers [J]. Macromolecules, 2011, 44(24): 9821-9829.
[16] TANG Y, WU N, LUO S, et al. One-step electrodeposition to layer-by-layer graphene-conducting-polymer hybrid films[J]. Macromol Rapid Comm, 2012, 33(20): 1780-1786.
[17] STANKOVICH S, DIKIN D A, DOMMETT G H B, et al. Graphene-based composite materials[J]. Nature, 2006, 442(7100): 282-286.
[18] BAE S, KIM H, LEE Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes[J]. Nat Nanotechol, 2010, 5(8): 574-578.
[19] CHEN Z, REN W, GAO L, et al. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition[J]. Nat Mater, 2011, 10(6): 424-428.
[20] 燕绍九, 杨程, 洪起虎, 等. 石墨烯增强铝基纳米复合材料的研究[J]. 材料工程, 2014, (4): 1-6. YAN Shao-jiu, YANG Cheng, HONG Qi-hu, et al. Research of graphene-reinforced aluminum matrix nanocomposites[J]. Journal of Materials Engineering, 2014, (4): 1-6.
[21] BAI S, SHEN X, ZHONG X, et al. One-pot solvothermal preparation of magnetic reduced graphene oxide-ferrite hybrids for organic dye removal[J]. Carbon, 2012, 50(6): 2337-2346.
[22] TIAN J, LIU S, ZHANG Y, et al. Environmentally friendly, one-pot synthesis of Ag nanoparticle-decorated reduced graphene oxide composites and their application to photocurrent generation[J]. Inorg Chem, 2012, 51(8): 4742-4746.
[23] LIANG J, WEI W, ZHONG D, et al. One-step in situ synthesis of SnO2/graphene nanocomposites and its application as an anode material for Li-ion batteries[J]. ACS Appl Mater Inter, 2011, 4(1): 454-459.
[24] DONG X, XU H, WANG X, et al. 3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection[J]. ACS Nano, 2012, 6(4): 3206-3213.
[25] WU J, SHEN X, JIANG L, et al. Solvothermal synthesis and characterization of sandwich-like graphene/ZnO nanocomposites[J]. Appl Surf Sci, 2010, 256(9): 2826-2830.
[26] SHEN J F, YAN B, SHI M, et al. One step hydrothermal synthesis of TiO2-reduced graphene oxide sheets[J]. J Mater Chem, 2011, 21(10):3415-3421.
[27] WANG H W, HU Z A, CHANG Y Q, et al. Facile solvothermal synthesis of a graphene nanosheet-bismuth oxide composite and its electrochemical characteristics[J]. Electrochim Acta, 2010, 55(28): 8974-8980.
[28] ZHU J X, ZHU T, ZHOU X Z, et al. Facile synthesis of metal oxide/reduced graphene oxide hybrids with high lithium storage capacity and stable cyclability[J]. Nanoscale, 2011, 3(3): 1084-1089.
[29] DAI Y, CAI S, YANG W, et al. Fabrication of self-binding noble metal/flexible graphene composite paper[J]. Carbon, 2012, 50(12): 4648-4654.
[30] ADHIKARI B, BISWAS A, BANERJEE A. Graphene oxide-based supramolecular hydrogels for making nanohybrid systems with Au nanoparticles[J]. Langmuir, 2011, 28(2): 1460-1469.
[31] TIEN H, HUANG Y, YANG S, et al. The production of graphene nanosheets decorated with silver nanoparticles for use in transparent, conductive films[J]. Carbon, 2011, 49(5): 1550-1560.
[32] ZHOU X, HUANG X, QI X, et al. In situ synthesis of metal nanoparticles on single-layer graphene oxide and reduced graphene oxide surfaces[J]. J Phys Chem C, 2009, 113(25): 10842-10846.
[33] ZHANG Z, XU F, YANG W, et al. A facile one-pot method to high-quality Ag-graphene composite nanosheets for efficient surface-enhanced Raman scattering[J]. Chem Commun, 2011, 47(22): 6440-6442.
[34] ZHANG M, QU B, LEI D, et al. A green and fast strategy for the scalable synthesis of Fe2O3/graphene with significantly enhanced Li-ion storage properties[J]. J Mater Chem, 2012, 22(9): 3868-3874.
[35] VADAHANAMBI S, JUNG J, OH I. Microwave syntheses of graphene and graphene decorated with metal nanoparticles[J]. Carbon, 2011, 49(13): 4449-4457.
[36] LIN Y, BAGGETT D W, KIM J, et al. Instantaneous formation of metal and metal oxide nanoparticles on carbon nanotubes and graphene via solvent-free microwave heating[J]. ACS Appl Mater Interf, 2011, 3(5): 1652-1664.
[37] HASSAN H M A, ABDELSAYED V, KHDER A E R S, et al. Microwave synthesis of graphene sheets supporting metal nanocrystals in aqueous and organic media[J]. J Mater Chem, 2009, 19(23): 3832-3837.
[38] GUARDIA L, VILLAR-RODIL S, PAREDES J I, et al. UV light exposure of aqueous graphene oxide suspensions to promote their direct reduction, formation of graphene-metal nanoparticle hybrids and dye degradation[J]. Carbon, 2012, 50(3): 1014-1024.
[39] AKHAVAN O. Photocatalytic reduction of graphene oxides hybridized by ZnO nanoparticles in ethanol[J]. Carbon, 2011, 49(1): 11-18.
[40] WILLIAMS G, SEGER B, KAMAT P V. TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide[J]. ACS Nano, 2008, 2(7): 1487-1491.
[41] KARIM M R, SHINODA H, NAKAI M, et al. Electrical conductivity and ferromagnetism in a reduced graphene-metal oxide hybrid[J]. Adv Fun Mater, 2013, 23(3): 323-332.
[42] LIU X, MAO J, LIU P, et al. Fabrication of metal-graphene hybrid materials by electroless deposition[J]. Carbon, 2011, 49(2): 477-483.
[43] CAO X, SHI Y, SHI W, et al. Preparation of novel 3D graphene networks for supercapacitor applications[J]. Small, 2011, 7(22): 3163-3168.
[44] MANDAL S, SAHA S K. Ni/graphene/Ni nanostructures for spintronic applications[J]. Nanoscale, 2012, 4(3): 986-990.
[45] TUNG T T, FELLER J, KIM T, et al. Electromagnetic properties of Fe3O4-functionalized graphene and its composites with a conducting polymer[J]. J Polym Sci Pol Chem, 2012, 50(5): 927-935.
[46] KASSAEE M Z, MOTAMEDI E, MAJDI M. Magnetic Fe3O4-graphene oxide/polystyrene: fabrication and characterization of a promising nanocomposite[J]. Chem Eng J, 2011, 172(1): 540-549.
[47] WANG X, SONG L, YANG H, et al. Cobalt oxide/graphene composite for highly efficient CO oxidation and its application in reducing the fire hazards of aliphatic polyesters[J]. J Mater Chem, 2012, 22(8): 3426-3431.
[48] BIRROZZIA A, RACCICHINIB R, NOBILIA F, et al. High-stability graphene nano sheets/SnO2 composite anode for lithium ion batteries[J]. Electrochimica Acta, 2014, 137(10): 228-234.
[49] WANG H L, CUI L F, YANG Y A, et al. Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries[J]. J Am Chem Soc, 2010, 132(40): 13978-13980.
[50] CHEN J S, WANG Z Y, DONG X C, et al. Graphene-wrapped TiO2 hollow structures with enhanced lithium storage capabilities[J]. Nanoscale, 2011, 3(5): 2158-2161.
[51] 丁翔, 黄正宏, 沈万慈, 等. 氧化铜/石墨烯的制备及其电化学性能[J]. 新型炭材料, 2013, 28(3): 172-177. DING Xiang, HUANG Zheng-hong, SHEN Wan-ci, et al. Preparation and electrochemical performance of a CuO/graphene composite[J]. New Carbon Materials, 2013, 28(3): 172-177.
[52] CHEN S, ZHU J, WU X, et al. Graphene oxide-MnO2 nanocomposites for supercapacitors[J]. ACS Nano, 2010, 4(5): 2822-2830.
[53] 曲江英, 李雨佳, 李传鹏, 等. 还原氧化石墨烯/Mn3O4纳米复合材料的合成及其在超级电容器中的应用[J]. 新型炭材料, 2014, 29(3):186-192. QU Jiang-ying, LI Yu-jia, LI Chuan-peng, et al. Synthesis of reduced graphene oxide/Mn3O4 nanocomposites for supercapacitors[J]. New Carbon Materials, 2014, 29(3): 186-192.
[54] CHEN S, ZHANG L L, ZHAO X S, et al. Graphene/polyaniline nanofiber composites as supercapacitor electrodes[J]. Chem Mater, 2010, 22(4):1392-1401.
[55] LIU J, WANG Z, XIE X, et al. A rationally-designed synergetic polypyrrole/graphene bilayer actuator[J]. J Mater Chem, 2012, 22(9): 4015-4020.
[56] ZHAO Y, LIU J, HU Y, et al. Highly compression-tolerant supercapacitor based on polypyrrole-mediated graphene foam electrodes[J]. Adv Mater, 2013, 25(4): 591-595.
[57] WANG X, ZHI L J, MULLEN K, et al. Transparent, conductive graphene electrodes for dye-sensitized solar cells[J]. Nano Letter, 2008, 8(1):323-327.
[58] BECERRIL H A, MAO J, LIU Z F, et al. Evaluation of solution-processed reduced graphene oxide films as transparent con-ductors[J]. ACS Nano, 2008, 2(3):463-470.
[59] LI X L, ZHANG G Y, BAI X D, et al. Highly conducting graphene sheets and langmuir-blodgett films[J]. Nat Nanotechnol, 2008, 3(9):538-542.
[60] ALWARAPPAN S, ERDEM A, LI C Z, et al. Probing the electrochemical properties of graphene nanosheets for biosensing applications[J]. J Phys Chem C, 2009, 113(20):8853-8857.
[61] WANG Y, YANG R, SHI Z, et al. Super-elastic graphene ripples for flexible strain sensors[J]. ACS Nano, 2011, 5(5): 3645-3650.
[62] HONG W, BAI H, XU Y, et al. Preparation of gold nanoparticle/graphene composites with controlled weight contents and their application in biosensors[J]. J Phys Chem C, 2010, 114(4): 1822-1826.
[63] ROBINSON J T, PERKINS F K, SNOW E S, et al. Reduced graphene oxide molecular sensors[J]. Nano Letter, 2008, 8(10): 3137-3140.
[64] SCHEDIN F, GEIM A K, MOROZOV S V, et al. Detection of individual gas molecules adsorbed on graphene[J]. Nat Mater, 2007, 6(9): 652-655.
[65] DAN Y, LU Y, KYBERT N J, et al. Intrinsic response of graphene vapor sensors[J]. Nano Letters, 2009, 9(4): 1472-1475.
[66] KIM Y, NA H, MIN D. Influence of surface functionalization on the growth of gold nanostructures on graphene thin films[J]. Langmuir, 2010, 26(16): 13065-13070.
[67] LIU H R, YANG W B, HE F F, et al. Graphene-based composite with microwave absorption property prepared by in situ reduction[J]. Polym Compos, 2014, 35(3): 461-467.
[1] 刘伟, 曹腊梅, 王岭, 徐彩虹, 益小苏. RTM成型工艺对Cf/SiBCN陶瓷基复合材料性能的影响[J]. 材料工程, 2015, 43(6): 1-6.
[2] 李敬勇, 刘涛, 郭宇文. 搅拌摩擦加工铝基复合材料的高温摩擦磨损性能[J]. 材料工程, 2015, 43(6): 21-25.
[3] 倪楠楠, 温月芳, 贺德龙, 益小苏, 郭妙才, 许亚洪. 结构-阻尼复合材料研究进展[J]. 材料工程, 2015, 43(6): 90-101.
[4] 张勇, 谢卫红, 刘宏伟, 张峰. 聚氨酯蜂窝纸板动力学性能及其本构模型[J]. 材料工程, 2015, 43(5): 27-32.
[5] 李雪爱, 王春生, 韩喜江. 原位化学沉淀法制备Fe3O4-石墨复合材料的吸波性能[J]. 材料工程, 2015, 43(5): 44-49.
[6] 冯宇, 何宇廷, 安涛, 崔荣洪, 邵青, 范超华. 湿热环境对航空复合材料加筋板压缩屈曲和后屈曲性能的影响[J]. 材料工程, 2015, 43(5): 81-88.
[7] 董慧民, 安学锋, 益小苏, 闫丽, 苏正涛, 包建文. 纤维增强聚合物基复合材料低速冲击研究进展[J]. 材料工程, 2015, 43(5): 89-100.
[8] 王林鹏, 马玉洁, 周学华, 刘云, 武瑞东. 碳点的制备与应用研究进展[J]. 材料工程, 2015, 43(5): 101-112.
[9] 石晓朋, 李曙林, 常飞, 卞栋梁, 尹俊杰. 复合材料加筋壁板低速冲击响应与冲击能量关系[J]. 材料工程, 2015, 43(4): 53-58.
[10] 马彦, 陈朝辉. 1800℃热处理对PIP法C/SiC复合材料结构和性能的影响[J]. 材料工程, 2015, 43(4): 98-101.
[11] 张响, 陈招科, 熊翔. C/C-SiC复合材料表面ZrB2基陶瓷涂层的制备及高温烧结机理[J]. 材料工程, 2015, 43(3): 1-6.
[12] 刘鹏, 李士凯, 张元彬, 刘燕. 非晶增强铝基复合材料的微观结构及腐蚀性能[J]. 材料工程, 2015, 43(3): 67-71.
[13] 张平, 莫尊理, 张春, 韩立娟, 李政. 磁响应性TiO2/石墨烯纳米复合材料的合成及光催化性能[J]. 材料工程, 2015, 43(3): 72-77.
[14] 曹文斌, 许军娜, 刘文秀, 孙芃, 张欣. 可见光活性氮掺杂纳米二氧化钛研究进展[J]. 材料工程, 2015, 43(3): 83-90.
[15] 高禹, 王钊, 陆春, 包建文, 宋恩鹏, 董尚利. 高性能树脂基复合材料典型空天环境下动态力学行为研究现状[J]. 材料工程, 2015, 43(3): 106-112.
Full text



版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持