Please wait a minute...
 
材料工程  2015, Vol. 43 Issue (4): 8-12    DOI: 10.11868/j.issn.1001-4381.2015.04.002
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
热机械训练过程中Fe-Mn-Si系形状记忆合金的组织演变
卢棋1, 何国球1, 陈淑娟1, 佘萌1, 刘颺1, 杨洋1, 朱旻昊2
1. 同济大学 材料科学与工程学院, 上海 201804;
2. 西南交通大学 牵引动力国家重点实验室, 成都 610031
Microstructure Evolution of Fe-Mn-Si Shape Memory Alloy During Thermal Mechanical Training Process
LU Qi1, HE Guo-qiu1, CHEN Shu-juan1, SHE Meng1, LIU Yang1, YANG Yang1, ZHU Min-hao2
1. College of Materials Science and Engineering, Tongji University, Shanghai 201804, China;
2. State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, China
全文: PDF(1974 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 采用金相、XRD、SEM和TEM等对Fe-Mn-Si系形状记忆合金在热机械训练过程中组织的演变进行研究。结果表明:热机械训练是应力诱发γε马氏体相变及其逆相变过程的重复。训练前的组织中几乎不存在马氏体,训练后合金中应力诱发的ε马氏体分布比较均匀,相互平行,交叉现象较少。同时,晶体中的马氏体呈现ε马氏体区域择优取向,过多(5次以上)训练后,合金基体内部形成大量位错缠结。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
卢棋
何国球
陈淑娟
佘萌
刘颺
杨洋
朱旻昊
关键词 Fe-Mn-Si系记忆合金热机械训练组织演变马氏体    
Abstract:The microstructure evolution of Fe-Mn-Si shape memory alloy in the process of thermal mechanical training was studied through analysis by microscopy, XRD, SEM and TEM. The results show that thermal mechanical training is a repeated transformation process of stress induced γε martensite and its reverse. Before the training, few martensites are observed in the structure. After the training, ε martensites distribute uniformly,in parallel with each other, and less crossover phenomenons.Meanwhile,martensites in crystal structure with martensitic prefer zone orientation.After a lot of training(over five times),a lot of dislocation tangle is formed inside the alloy matrix.
Key wordsFe-Mn-Si shape memory alloy    thermal mechanical training    microstructure evolution    martensite
收稿日期: 2014-02-27     
1:  TG139+.6  
通讯作者: 何国球(1966-),男,博士生导师,工学博士,从事金属疲劳、记忆合金和复合材料相关研究工作,联系地址:上海市嘉定区曹安公路4800号同济大学材料学院(201804),gqhe@tongji.edu.cn     E-mail: gqhe@tongji.edu.cn
引用本文:   
卢棋, 何国球, 陈淑娟, 佘萌, 刘颺, 杨洋, 朱旻昊. 热机械训练过程中Fe-Mn-Si系形状记忆合金的组织演变[J]. 材料工程, 2015, 43(4): 8-12.
LU Qi, HE Guo-qiu, CHEN Shu-juan, SHE Meng, LIU Yang, YANG Yang, ZHU Min-hao. Microstructure Evolution of Fe-Mn-Si Shape Memory Alloy During Thermal Mechanical Training Process. Journal of Materials Engineering, 2015, 43(4): 8-12.
链接本文:  
http://jme.biam.ac.cn/jme/CN/10.11868/j.issn.1001-4381.2015.04.002      或      http://jme.biam.ac.cn/jme/CN/Y2015/V43/I4/8
[1] SATO A,YAMAJI Y, MORI T.Physical properties controlling shape memory effect in Fe-Mn-Si alloys[J].Acta Metall,1986,34:287-293.
[2] TANAKA Y, HIMURO Y, KAINUMA R, et al. Ferrous polycrystalline shape-memory alloy showing huge superelasticity[J]. Science,2010,327(5972):1488-1490.
[3] MAJI B C,KRISHAAN M.The effect of microstructure on the shape recovery of a Fe-Mn-Si-Cr-Ni stainless steel shape memory alloy[J].Scripta Materialia,2003,48(1):71-77.
[4] ANDRAWES B AND DESROCHES R. Effect of ambient temperature on the hinge opening in bridges with shape memory alloy seismic restrainers[J]. Eng Struct,2007,29(9):2294-2301.
[5] MARUYAMA T AND KUBO K. Ferrous shape memory alloys:properties, processing and applications shape memory and super elastic alloys[R]. Cambridge:Woodhead Publishing Ltd,2011.
[6] 陈淑娟,何国求,张熹,等. 固溶温度对Fe基形状记忆合金性能的影响[J].上海金属,2009,31(2):17-20.CHEN S J, HE G Q, ZHANG X. Effect of solution temperature on the properties of Fe-based shape memory alloy[J]. Shanghai Metal,2009,31(2):17-20.
[7] YANG C H, LIN H C, LIN K M, et al. Effects of thermo-mechanical treatment on a Fe-30Mn-6Si shape memory alloy[J]. Materials Science and Engineering:A,2008,497(1-2):445-450.
[8] 卢棋,何国球,陈淑娟,等.热机械训练对Fe-Mn-Si系形状记忆合金记忆效应及组织结构的影响[J].功能材料,2014,(4):4076-4078.LU Q, HE G Q, CHEN S J, et al. The influence of thermo-mechanical training on the shape memory effect and structure in Fe-Mn-Si shape memory alloy[J]. Journal of Functional Materials, 2014,(4):4076-4078.
[9] LEINENBACH C, KRAMER H, BERNHARD C, et al. Thermo-mechanical properties of an Fe-Mn-Si-Cr-Ni-VC shape memory alloy with low transformation temperature[J].Adv Eng Mater,2012,14(1-2):62-67.
[10] STANFORD N,DUNNE D P.Thermo-mechanical processing and the shape memory effect in an Fe-Mn-Si-based shape memory alloy[J].Materials Science and Engineering:A,2006,422(1-2):352-359.
[11] YANG H S, JANG J H, BHADESHIA H K D H, et al. Critical assessment:martensite-start temperature for the γ→ε transformation[J]. Computer Coupling of Phase Diagrams and Thermochemistry,2012,36(1-2):16-22.
[12] LI Hong-qi, WANG Yan-bin, CHEN Qi-zhi, et al. In situ TEM observation of magnetization-enhanced dislocation emission and motion for 60Fe40Ni alloy[J].Chinese Science Bulletin,1997,24:2064-2066.
[13] ANDRADE S, OSTHUES M, ARRUDA G J. The influence of thermal cycling on the transition temperatures of a Fe-Mn-Si shape memory alloy[J]. Materials Science and Engineering:A,1999,273:512-516.
[14] KAJIWARA S. Characteristic feature of shape memory effect and related transformation behavior in feature alloys[J].Materials Science and Engineering:A,1999,273:67-88.
[15] WEN Y H, LI N,XIONG L R. Composition design principles for Fe-Mn-Si-Cr-Ni based alloys with better shape memory effect and higher recovery stress[J]. Materials Science and Engineering:A,2005,407(1-2):31-35.
[16] FEDERZONI L, GUENIN G. Influence of the presence of pre-existing thermal ε-martensite on the formation of stress-induced ε-martensite and on the shape memory effect of a Fe-Mn-Cr-Si-Ni shape memory alloy[J]. Scripta Metallurgical et Materialia,1994,31(1):25-30.
[17] CHOI E, CHUNG Y S, CHOI J H, et al. The confining effectiveness of NiTiNb and NiTi SMA wire jackets for concrete smart[J]. Mater Struct,2010,19(1):25-30.
[18] QIAO Z X, LIU Y C, WANG J H. Effect of pre-strain on morphology of stress induced ε martensite in an Fe-Mn-Si shape memory alloy[J]. Journal of Materials Science & Engineering,2008,26(1):46-52.
[1] 杨可, 杨克, 包晔峰. 氮合金化堆焊硬面合金的耐腐蚀性能研究[J]. 材料工程, 2015, 43(5): 33-37.
[2] 乔志霞, 李连进, 宁保群. 奥氏体化条件对675装甲钢中马氏体相变的影响[J]. 材料工程, 2014, 0(7): 5-9.
[3] 胡春燕, 刘新灵, 陶春虎. 时效温度对0Cr17Ni4Cu4Nb钢组织及力学性能的影响[J]. 材料工程, 2014, 0(11): 73-78.
[4] 樊俊铃, 郭杏林, 吴承伟. FV520B不锈钢角焊缝接头的组织和断裂机理[J]. 材料工程, 2013, 0(7): 1-5,91.
[5] 胡永强, 郭喜平, 郭海生. 热处理对定向凝固Nb-Ti-Si基超高温合金组织及显微硬度的影响[J]. 材料工程, 2013, 0(6): 5-11.
[6] 马龙腾, 王立民, 胡劲, 刘正东, 张秀丽. AISI403马氏体不锈钢的热变形特性研究[J]. 材料工程, 2013, 0(5): 38-43.
[7] 姜志忠, 黄继华, 胡杰, 陈树海. CLAM钢焊接热影响区连续冷却过程相变规律[J]. 材料工程, 2013, 0(4): 68-73.
[8] 王会珍, 杨平, 毛卫民. 板条状马氏体形貌和惯习面的 3D EBSD分析[J]. 材料工程, 2013, 0(4): 74-80.
[9] 崔雪飞, 米绪军, 林晨光, 惠松晓, 魏衍广, 陶海明. Ti-5Mo-5V-1Cr-3Al合金的热压缩变形行为研究[J]. 材料工程, 2013, 0(12): 19-26.
[10] 刘昆鹏, 赵子华, 张峥. 321不锈钢疲劳早期损伤的涡流评估[J]. 材料工程, 2012, 0(11): 61-65.
[11] 刘亚娟, 吕祥鸿, 赵国仙, 陈长风, 薛艳. 超级13Cr马氏体不锈钢在入井流体与产出流体环境中的腐蚀行为研究[J]. 材料工程, 2012, 0(10): 17-21,47.
[12] 朱国明, 邝霜, 陈贵江, 陈波, 任君茹. 马氏体对C-Si-Mn冷轧双相钢屈服特性的影响[J]. 材料工程, 2011, 0(4): 66-70.
[13] 熊自柳, 蔡庆伍, 江海涛, 唐荻. TRIP钢中奥氏体的力学稳定性研究[J]. 材料工程, 2011, 0(3): 11-15.
[14] 吕祥鸿, 赵国仙, 王宇, 张建兵, 谢凯意. 超级13Cr马氏体不锈钢抗SSC性能研究[J]. 材料工程, 2011, 0(2): 17-21,25.
[15] 岳重祥, 张立文, 阮金华. φ70~80轴承钢棒材轧制过程的孔型设计及三维模拟[J]. 材料工程, 2011, 0(2): 60-64.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn