Please wait a minute...
 
材料工程  2015, Vol. 43 Issue (4): 19-24    DOI: 10.11868/j.issn.1001-4381.2015.04.004
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
电子束熔炼Inconel740合金不同热处理状态下的组织演变与显微硬度
谭毅1,2, 廖娇1,2, 李佳艳1,2, 石爽1,2, 王清1, 游小刚1,2, 李鹏廷1,2, 姜辛1
1. 大连理工大学 材料科学与工程学院, 辽宁 大连 116024;
2. 大连理工大学 辽宁省太阳能光伏系统重点实验室, 辽宁 大连 116024
Microstructure Evolution and Microhardness of Inconel 740 Alloy in Different Heat-treatment Conditions Prepared by Electron Beam Melting
TAN Yi1,2, LIAO Jiao1,2, LI Jia-yan1,2, SHI Shuang1,2, WANG Qing1, YOU Xiao-gang1,2, LI Peng-ting1,2, JIANG Xin1
1. School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China;
2. Key Laboratory for Solar Energy Photovoltaic System of Liaoning Province, Dalian University of Technology, Dalian 116024, Liaoning, China
全文: PDF(1731 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 利用电子束熔炼技术制备Inconel 740合金,研究热处理状态下合金的组织演变过程与显微硬度的分布情况,分析热处理过程中合金相析出规律与相分布特点。结果表明:合金宏观组织良好,夹杂物含量较少,晶粒尺寸在2mm左右。标准热处理后的组织主要为奥氏体,并有大量孪晶,晶界上碳化物M23C6呈连续分布,同时也有G相和η相析出。晶内析出大量球形、尺寸大小约为30nm的强化相γ'。电子束熔炼制备的Inconel 740合金在标准热处理状态下的显微硬度明显高于传统方法制备的同种合金,约高120HV0.1
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谭毅
廖娇
李佳艳
石爽
王清
游小刚
李鹏廷
姜辛
关键词 电子束熔炼Inconel 740合金组织显微硬度    
Abstract:Inconel 740 alloy was prepared by electron beam melting(EBM). The microstructure evolution and microhardness variation of the alloy under heat treatment conditions were investigated, the precipitation principle and distribution characteristics of phases during heat treatment process were analyzed. The results indicate that Inconel 740 alloy has a good macrostructure and lower inclusion content, the grain size is about 2mm. The microstructure is austenite with a lot of twin crystals after standard heat treatment, the M23C6 carbides are distributed continuously on the grain boundaries, with G phase and η phase. Lots of spherical and 30nm in size strengthen phase γ' precipitate in the grain. The microhardness of Inconel 740 alloy prepared by electron beam melting with standard heat treatment is about 120HV0.1 higher than the same alloy that made through traditional method.
Key wordselectron beam melting    Inconel 740 alloy    microstructure    microhardness
收稿日期: 2014-02-13     
1:  TF134  
通讯作者: 谭毅(1961-),男,教授,主要研究方向为采用电子束等载能束熔炼技术制备多晶硅等高纯材料以及镍基高温合金等多元合金材料,联系地址:辽宁省大连市大连理工大学新三束实验室208(116024),tanyi@dlut.edu.cn     E-mail: tanyi@dlut.edu.cn
引用本文:   
谭毅, 廖娇, 李佳艳, 石爽, 王清, 游小刚, 李鹏廷, 姜辛. 电子束熔炼Inconel740合金不同热处理状态下的组织演变与显微硬度[J]. 材料工程, 2015, 43(4): 19-24.
TAN Yi, LIAO Jiao, LI Jia-yan, SHI Shuang, WANG Qing, YOU Xiao-gang, LI Peng-ting, JIANG Xin. Microstructure Evolution and Microhardness of Inconel 740 Alloy in Different Heat-treatment Conditions Prepared by Electron Beam Melting. Journal of Materials Engineering, 2015, 43(4): 19-24.
链接本文:  
http://jme.biam.ac.cn/jme/CN/10.11868/j.issn.1001-4381.2015.04.004      或      http://jme.biam.ac.cn/jme/CN/Y2015/V43/I4/19
[1] 郭建亭.高温合金在能源工业领域中的应用现状与发展[J].金属学报,2010,46(5):513-527.GUO J T. The current situation of application and development of superalloys in the fields of energy industry[J]. Acta Metallurgica Sinica,2010,46(5):513-527.
[2] 郭建亭, 周兰章, 袁超, 等. 我国独创和独具特色的集中高温合金的组织与性能[J]. 中国有色金属学报,2011,21(2):237-250.GUO J T,ZHOU L Z,YUAN C, et al. Microstructure and properties of several originally invented and unique superalloys in China[J]. The Chinese Journal of Nonferrous Metals,2011,21(2):237-250.
[3] SMITH G D. Introduction of an advanced superheater alloy for coal-fired boilers[A]. Corrosion 2000[C]. Houston:International NACE Press,2000.1-12.
[4] VISWANATHAN R, COLEMAN K, RAO U. Materials for ultra-supercritical coal-fired power plant boilers[J]. International Journal of Pressure Vessels and Piping,2006,83(11):778-783.
[5] ZHAO S Q, XIE X S, SMITH D G, et al. Research and improvement on structure stability and corrosion resistance of nickel-base superalloy INCONEL alloy 740[J]. Materials & Design, 2005,27(10):1120-1127.
[6] COWEN J C, DANIELSON E P, JABLONSKI D P.The microstructural evolution of Inconel alloy 740 during solution treatment,aging,and exposure at 760℃[J]. Journal of Materials Engineering and Performance,2011,20(6):1078-1063.
[7] ZHANG Z H, FRENZEL J, NEUKING K, et al. On the reaction between NiTi melts and crucible graphite during vacuum induction melting of NiTi shape memory alloys[J]. Acta Materialia,2005,53(14):3971-3985.
[8] 李清华, 赵志力. 真空冶金现状及发展前景[J]. 沈阳大学学报, 2003,15(2):35-42.LI Q H, ZHAO Z L. The present situation and the prospect of vaccum metallurgy[J]. Journal of Shenyang University,2003,15(2):35-42.
[9] 王晓峰, 周晓明, 穆松林, 等. 高温合金熔炼工艺讨论[J].材料导报A,2012,26(4):135-134.WANG X F, ZHOU X M, MU S L, et al. Discussion on melting process of superalloy[J]. Materials Review A,2012,26(4):135-134.
[10] 郭建亭. 高温合金材料学(中册)制备工艺[M]. 北京:科学出版社,2008. GUO J T. Materials Science for Superalloys (Middle Volume) Preparation Process[M]. Beijing:Science Press,2008.
[11] 张文林, 孙涛, 李娟莹. 电子束熔炼及其设备[J]. 冶金设备, 2003,140(4):32-34. ZHANG W L, SUN T, LI J Y. The smelting of electron beam and the smelting equipment[J].Metallurgical Equipment,2003,140(4):32-34.
[12] CHOUDHURY A, HENGSBERGER Y. Electron beam melting and refining of metals and alloys[J]. ISIJ International,1992,32(5):673-681.
[13] 郭岩, 周荣灿, 侯淑芳, 等. 镍基合金的析出相及其强化机制[J]. 金属热处理,2011,36(7):46-50. GUO Y,ZHOU R C, HOU S F, et al. Precipitates and strengthening mechanism in Ni-based alloys[J]. Heat Treatment of Metals,2011,36(7):46-50.
[14] 李秀艳, 张建, 戎利建, 等. Fe-Ni基合金中次生η相的析出机理[J]. 材料研究学报,2006,20(2):113-119. LI X Y, ZHANG J, RONG L J, et al. The precipitation mechanism of secondary η phase in a FeNi-based alloy[J]. Chinese Journal of Materials Research,2006,20(2):113-119.
[15] 陈思成, 李长荣, 杜振民, 等. Ni基高温合金共格强化相平衡形状的能量分析[J]. 材料热处理学报, 2012,33(12):147-151. CHEN S C, LI C R, DU Z M, et al. Energetic analysis of equilibrium shapes of coherent precipitates in Ni-based superalloys[J].Transactions of Materials and Heat Treatment,2012,33(12):147-151.
[16] 陈昊, 董建新, 张麦仓. 热处理工艺对铸造高温合金 K480 组织的影响[J].材料热处理学报,2012,33(7):37-44. CHEN H,DONG J X,ZHANG M C. Effect of heat treatment process on microstructure of cast superalloy K480[J]. Transactions of Materials and Heat Treatment,2012,33(7):37-44.
[17] ZHAO S Q,XIE X S, GAYLORD D. Microstructural stability and mechanical properties of a new nickel-based superalloy[J]. Materials Science and Engineering:A,2003,355(1):96-105.
[18] ZHAO S Q, XIE X S, GAYLORD D S, et al. Gamma prime coarsening and age-hardening behaviors in a new nickel base superalloy[J]. Materials Letters,2004,58(11):1784-1787.
[19] 姚志浩, 董建新, 陈旭, 等. GH738高温合金长期时效过程中γ'相演变规律[J]. 材料热处理学报,2013,34(1):31-37. YAO Z H, DONG J X, CHEN X, et al. Gamma prime phase evolution during long-time exposure for GH738 superalloy[J]. Transactions of Materials and Heat Treatment,2013,34(1):31-37.
[20] 胡赓祥, 蔡珣, 戎咏华. 材料科学基础[M]. 上海:上海交通大学出版社,2006. HU G X, CAI X, RONG Y H. Fundamentals of Materials Science[M]. Shanghai:Shanghai Jiao Tong University Press,2006.
[1] 杨海青, 李青, 肖程波, 胡聘聘, 林山峰. Re及时效时间对耐腐蚀镍基定向合金组织和持久寿命的影响[J]. 材料工程, 2015, 43(6): 31-37.
[2] 李小强, 敖敬培, 李子阳, 李力, 屈盛官. CuMnNiCo钎料钎焊MGH956合金接头组织及力学性能研究[J]. 材料工程, 2015, 43(5): 21-26.
[3] 卢棋, 何国球, 陈淑娟, 佘萌, 刘颺, 杨洋, 朱旻昊. 热机械训练过程中Fe-Mn-Si系形状记忆合金的组织演变[J]. 材料工程, 2015, 43(4): 8-12.
[4] 刘铭, 汝继刚, 臧金鑫, 张坤, 何维维, 王亮, 陈高红. 新型Al-Zn-Mg-Cu铝合金热稳定性研究[J]. 材料工程, 2015, 43(4): 13-18.
[5] 傅田, 李文亚, 杨夏炜, 李锦锋, 高大路. 搅拌摩擦点焊技术及其研究现状[J]. 材料工程, 2015, 43(4): 102-114.
[6] 彭建, 彭毅, 韩韡, 潘复生. 挤压温度对Mg-2Zn-Mn-0.5Nd镁合金组织和性能的影响[J]. 材料工程, 2015, 43(3): 23-27.
[7] 刘鹏, 李士凯, 张元彬, 刘燕. 非晶增强铝基复合材料的微观结构及腐蚀性能[J]. 材料工程, 2015, 43(3): 67-71.
[8] 杨闯, 彭晓东, 刘静, 马亚芹, 王华. TC4钛合金低压真空氮化改性层的制备与性能[J]. 材料工程, 2015, 43(3): 78-82.
[9] 雷玉成, 龚晨诚, 罗雅, 肖波, 朱强. 激励电流对MGH956合金原位合金化TIG焊接头性能的影响[J]. 材料工程, 2015, 43(2): 7-13.
[10] 谷晓鹏, 段珍珍, 邓钢, 谷晓燕. S355J2W+N钢激光-MAG复合焊与MAG焊对比[J]. 材料工程, 2015, 43(2): 20-25.
[11] 黄烁, 王磊, 张北江, 赵光普. GH4706合金的热变形行为与显微组织演化[J]. 材料工程, 2015, 43(2): 41-46.
[12] 冯广杰, 李卓然, 朱洪羽, 徐慨. SiC陶瓷真空钎焊接头显微组织和性能[J]. 材料工程, 2015, 43(1): 1-5.
[13] 刘胜明, 汤爱涛, 陈敏, 赵子鹏. 钛铁矿原位反应合成Al2O3-TiC颗粒增强铁基复合材料[J]. 材料工程, 2015, 43(1): 18-23.
[14] 闫世兴, 董世运, 徐滨士, 王玉江, 任维彬, 方金祥. 预热温度对灰铸铁表面激光熔覆镍基涂层组织与性能的影响[J]. 材料工程, 2015, 43(1): 30-36.
[15] 李万青, 魏红梅, 何鹏, 高丽娇, 林铁松, 李小强, 赫兰春. Ti3Al和Ti2AlNb合金扩散连接界面的组织及力学性能[J]. 材料工程, 2015, 43(1): 37-43.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn