Please wait a minute...
 
2222材料工程  2018, Vol. 46 Issue (12): 28-37    DOI: 10.11868/j.issn.1001-4381.2016.001214
  综述 本期目录 | 过刊浏览 | 高级检索 |
颗粒增强金属基复合材料的强化机理研究现状
叶想平1, 李英雷1, 翁继东1, 蔡灵仓2, 刘仓理2,*()
1 中国工程物理研究院流体物理研究所 冲击波物理与爆轰物理重点实验室, 四川 绵阳 621999
2 中国工程物理研究院, 四川 绵阳 621999
Research Status on Strengthening Mechanism of Particle-reinforced Metal Matrix Composites
Xiang-ping YE1, Ying-lei LI1, Ji-dong WENG1, Ling-cang CAI2, Cang-li LIU2,*()
1 National Key Laboratory for Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621999, Sichuan, China
2 China Academy of Engineering Physics, Mianyang 621999, Sichuan, China
全文: PDF(40898 KB)   HTML ( 16 )  
输出: BibTeX | EndNote (RIS)      
摘要 

本文总结了较低颗粒体积分数(≤ 14%)的颗粒增强金属基复合材料中主要存在的Orowan强化应力、位错强化应力、颗粒承载强化应力和其他强化应力的理论研究现状,以及各项强化应力之间的耦合关系。得出以下结论:(1)降低颗粒尺寸、提高颗粒体积分数和提高颗粒分布均匀性能够同时提高Orowan强化应力和位错强化应力,提高颗粒体积分数还能够提高颗粒承载强化应力;(2)采用微观非均匀分布的颗粒包围金属基体的材料设计方法,通过提高颗粒承载强化应力和提供塑性形变区,能够进一步提高复合材料屈服强度和延展性;(3)晶界强化效应和晶格摩擦应力对复合材料屈服强度也有贡献,但较少通过增强这两项强化效应提高复合材料屈服强度,通常可忽略复合材料中的固溶强化效应;(4)各项强化应力的耦合关系存在线性叠加、乘积叠加和均方根叠加3种形式。线性叠加和乘积叠加适用于纳米颗粒增强金属基复合材料,其中乘积叠加关系应用效果更好;均方根叠加主要应用于微米级颗粒增强金属基复合材料。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
叶想平
李英雷
翁继东
蔡灵仓
刘仓理
关键词 颗粒增强金属基复合材料强化机理Orowan强化位错强化颗粒承载强化    
Abstract

The research status on theoretic models and the coupling relationships of Orowan strengthening, dislocation strengthening, load-bearing effect of the reinforcement strengthening and others strengthening are successfully described in this study for particle-reinforced metal matrix composites(MMCs) with a volume fraction lower than 14%. Some conclusions can be obtained:Orowan strengthening and dislocation strengthening stress can be enhanced by increasing volume fraction, decreasing size of reinforcement and improving homogeneous distribution of reinforcement, load-bearing strengthening stress can also be enhanced by increasing volume fraction; yield strength and ductibility of MMCs can be enhanced much more by increasing load-bearing strengthening stress and plastic deformation region and adopting the material design method of metal matrix surrounded by particles with microstructural inhomogenous distribution; grain boundary strengthening and Peierls-Nabarro stress can also affect the yield strength of MMCs as a part of matrix strengthening, solid solution strengthening can be ignored usually; there are three coupling relationships for the sum strengthening contributions:linear summation, multiplicative combination and the root of the sum of the squares. The linear summation and multiplicative combination can be applied to nanoparticle-reinforced MMCs, the linear summation is generally applicable in the case when there are few factors influencing the strength, the multiplicative combination is the most commonly used method. The root of the sum of the squares is applied to micronparticle-reinforced MMCs.

Key wordsparticle-reinforced metal matrix composites    strengthening mechanism    Orowan strengthening    dislocation strengthening    load-bearing strengthening
收稿日期: 2016-10-13      出版日期: 2018-12-18
中图分类号:  TN249  
基金资助:中国工程物理研究院双百人才基金(038530)
通讯作者: 刘仓理     E-mail: cangliliu@sohu.com
作者简介: 刘仓理(1961-), 男, 研究员, 博士, 研究方向:冲击动力学, 联系地址:四川省绵阳市中国工程物理研究院院机关(621999), E-mail:cangliliu@sohu.com
引用本文:   
叶想平, 李英雷, 翁继东, 蔡灵仓, 刘仓理. 颗粒增强金属基复合材料的强化机理研究现状[J]. 材料工程, 2018, 46(12): 28-37.
Xiang-ping YE, Ying-lei LI, Ji-dong WENG, Ling-cang CAI, Cang-li LIU. Research Status on Strengthening Mechanism of Particle-reinforced Metal Matrix Composites. Journal of Materials Engineering, 2018, 46(12): 28-37.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.001214      或      http://jme.biam.ac.cn/CN/Y2018/V46/I12/28
Fig.1  位错绕行通过增强颗粒示意图[34]
Particle shape D L
Sphericity[37-40] 2rp
Rod[37]
Plate[37]
Table 1  Orowan方程参数计算式
Material E/GPa b/nm ν α/10-6-1 Tprocess/℃ Ttest/℃
Al
Al2O3
26 0.286 0.35 24
7.4
600 25
Table 2  铝和氧化铝颗粒性能参数表[25]
Fig.2  球形颗粒体积分数与Orowan强化应力理论值的关系
Fig.3  增强铝屈服强度和Orowan强化应力与球形氧化铝颗粒体积分数关系[33]
Fig.4  SiC纳米颗粒均匀分布于Mg2Zn基体扫描电镜图[3]
Fig.5  Mg2Zn合金室温压缩应力-应变曲线[3]
Fig.6  不同体积分数的Al/Al2O3-B4C增强铝屈服强度[25]
Fig.7  球形颗粒尺寸与Orowan强化应力关系图
Fig.8  颗粒尺寸不均匀示意图
Fig.9  弹性性能与颗粒体积分数关系[50]
Fig.10  颗粒微观非均匀分布的4种组织结构示意图[27, 51]
Fig.11  颗粒呈网络状分布的增强铝复合材料[53] (a)扫描电镜显微图; (b)准静态拉伸应力-应变曲线
Fig.12  准连续颗粒增强金属基复合材料示意图[27]
1 童慧, 胡正飞, 张振, 等. SiC改性及其在铝基复合材料中的应用[J]. 金属功能材料, 2015, 22 (1): 53- 60.
1 TONG H , HU Z F , ZHANG Z , et al. SiCp modification and their application in aluminum matrix composites[J]. Metallic Functional Materials, 2015, 22 (1): 53- 60.
2 LUAN B F , WU G H , LIU W , et al. High strength Al2O3p/2024Al composites-effect of particles, subgrains and precipitates[J]. Materials Science and Technology, 2005, 21 (12): 1440- 1443.
doi: 10.1179/174328405X71666
3 CHEN L Y , XU J Q , CHOI H , et al. Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles[J]. Nature, 2015, 528 (7583): 539- 548.
doi: 10.1038/nature16445
4 DIXIT M , MISHRA R S , SANKARAN K K . Structure-property correlations in Al 7050 and Al 7055 high-strength aluminum alloys[J]. Materials Science and Engineering:A, 2008, 478 (1/2): 163- 172.
5 黄天林.纳米结构Al-1%Si合金的组织、热稳定性及力学行为研究[D].重庆: 重庆大学, 2014.
5 HUANG T L. Structure, thermal stability and mechanical behavior of nanostructured Al-1%Si alloy[D]. Chongqing: Chongqing University, 2014.
6 曾星华, 徐润, 谭占秋, 等. 先进铝基复合材料研究的新进展[J]. 中国材料进展, 2015, 34 (6): 417- 426.
6 ZENG X H , XU R , TAN Z Q , et al. Progress of advanced aluminum matrix composites research[J]. Materials China, 2015, 34 (6): 417- 426.
7 张荻, 张国定, 李志强. 金属基复合材料的研究现状与发展趋势[J]. 中国材料进展, 2010, 29 (4): 1- 7.
7 ZHANG D , ZHANG G D , LI Z Q . The current state and trend of metal matrix composites[J]. Materials China, 2010, 29 (4): 1- 7.
8 黄陆军, 耿林. 非连续增强钛基复合材料研究进展[J]. 航空材料学报, 2014, 34 (4): 126- 138.
8 HUANG L J , GENG L . Progress on discontinuously reinforced titanium matrix composites[J]. Journal of Aeronautical Materials, 2014, 34 (4): 126- 138.
9 ERVINA EFZAN M N , KONG H J , KOK C K , et al. Review:effect of alloying element on Al-Si alloys[J]. Advanced Materials Research, 2014, 845 (1/2): 355- 359.
10 贾志宏, 丁立鹏, 吴赛楠, 等. 汽车车身用6000系铝合金板材微观组织与热处理工艺的研究进展[J]. 材料工程, 2014, (12): 104- 113.
doi: 10.11868/j.issn.1001-4381.2014.12.018
10 JIA Z H , DING L P , WU S N , et al. Research progress on microstructure and heat treatment of 6000 series aluminum alloys sheet for automotive body[J]. Journal of Materials Engineering, 2014, (12): 104- 113.
doi: 10.11868/j.issn.1001-4381.2014.12.018
11 POZUELO M , CHANG Y W , YANG J M . Effect of diamondoids on the microstructure and mechanical behavior of nanostructured Mg-matrix nanocomposites[J]. Materials Science and Engineering:A, 2015, 633 (1): 200- 208.
12 GOH C S , GUPTA M , WEI J , et al. Characterization of high performance Mg/MgO nanocomposites[J]. Journal of Composite Materials, 2007, 41 (19): 2325- 2335.
doi: 10.1177/0021998307075445
13 SURYANARAYANA C , NASSER Al-AQEELI . Mechanically alloyed nanocomposites[J]. Progress in Materials Science, 2013, 58 (4): 383- 502.
doi: 10.1016/j.pmatsci.2012.10.001
14 GOH C S , WEI J , LEE L C , et al. Properties and deformation behaviour of Mg-Y2O3 nanocomposites[J]. Acta Materiallia, 2007, 55 (15): 5115- 5121.
doi: 10.1016/j.actamat.2007.05.032
15 MIRZA F A , CHEN D L . A unified model for the prediction of yield strength in particulate-reinforced metal matrix nanocomposites[J]. Materials, 2015, 8 (8): 5138- 5153.
doi: 10.3390/ma8085138
16 HUSKINS E L , CAO B , RAMESH K T . Strengthening mechanisms in an Al-Mg alloy[J]. Materials Science and Engineering:A, 2010, 527 (6): 1292- 1298.
doi: 10.1016/j.msea.2009.11.056
17 KUMAR N , MISHRA R S . Additivity of strengthening mechanisms in ultrafine grained Al-Mg-Sc alloy[J]. Materials Science and Engineering, 2013, 580 (3): 175- 183.
18 CHENG L M , POOLE W L , EMBURY J D , et al. The influence of precipitation on the work-hardening behavior of the aluminum alloys AA6111 and AA7030[J]. Metallurgical and Materials Transactions A, 2003, 34 (11): 2473- 2481.
doi: 10.1007/s11661-003-0007-2
19 RAMAKRISHNAN N . An analytical study on strengthening of particulate reinforced metal matrix composites[J]. Acta Materialia, 1996, 44 (1): 69- 77.
doi: 10.1016/1359-6454(95)00150-9
20 HALL E O . The deformation and ageing of mild steel Ⅲ:discussion of results[J]. Proceeding of the Physical Society Section B, 1951, 643 (9): 747- 752.
21 PETCH N J . The cleavage strength of polycrystals[J]. Journal of Iron Steel Institute, 1953, 173 (1): 25- 28.
22 PEIERLS R . The size of a dislocation[J]. Proceedings of the Physical Society London, 1940, 52 (1): 34- 37.
doi: 10.1088/0959-5309/52/1/305
23 NABARRO F R N . Dislocation in a simple cubic lattice[J]. Proceedings of the Physical Society London, 1947, 59 (2): 256- 272.
doi: 10.1088/0959-5309/59/2/309
24 HUTCHINSON C R , NIE J F , GORSSE S . Modeling the precipitation processes and strengthening mechanisms in a Mg-Al-(Zn) AZ91 alloy[J]. Metallurgical and Materials Transactions A, 2005, 36 (8): 2093- 2105.
doi: 10.1007/s11661-005-0330-x
25 ALIZADEH M , BENI H A . Strength prediction of the ARBed Al/Al2O3/B4C nano-composites using Orowan model[J]. Material Research Bulletin, 2014, 59 (5/6): 290294.
26 ZHANG Z , CHEN D L . Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites:a model for predicting their yield strength[J]. Scripta Materialia, 2006, 54 (7): 1321- 1326.
doi: 10.1016/j.scriptamat.2005.12.017
27 HUANG L J , GENG L , PENG H X . Microstructurally inhomogeneous composites:is a homogeneous reinforcement distribution optimal?[J]. Progress in Materials Science, 2015, 71 (1): 96- 168.
28 KIM J H , LEE M G , KIM D , et al. Micromechanics-based strain hardening model in consideration of dislocation-precipitate interactions[J]. Metals and Materials International, 2011, 17 (2): 291- 300.
doi: 10.1007/s12540-011-0417-4
29 DECICCO M , KONISHI H , CAO G , et al. Strong, ductile magnesium-zinc nanocomposites[J]. Metallurgical and Materials Transactions A, 2009, 40 (12): 3038- 3045.
doi: 10.1007/s11661-009-0013-0
30 HUANG L J , GENG L , XU H Y , et al. In situ TiC particles reinforced Ti6Al4V matrix composite with a network reinforcement architecture[J]. Materials Science and Engineering:A, 2011, 528 (6): 2859- 2862.
doi: 10.1016/j.msea.2010.12.046
31 HUANG L J , WANG S , GENG L , et al. Low volume fraction in situ (Ti5Si3+ Ti2C)/Ti hybrid composites with network microstructure fabricated by reaction hot pressing of Ti-SiC system[J]. Composites Science and Technology, 2013, 82 (15): 23- 28.
32 OROWAN E. In symposium on internal stresses in metals and alloys[R]. London: Institute of Metals, 1948: 451.
33 LUAN B F , WU G H , HANSEN N , et al. High strength Al2O3p/6061 Al composites:effect of particles, subgrains and precipitates[J]. Materials Science and Technology, 2007, 23 (2): 233- 236.
doi: 10.1179/174328407X154365
34 BACON D J , KOCKS U F , SCATTERGOOD R O . The effect of dislocation self-interaction on the Orowan stress[J]. Philosophical Magazine, 1973, 28 (6): 1241- 1263.
doi: 10.1080/14786437308227997
35 QUEYREAU S , MONNET G , DEVINCRE B . Orowan strengthening and forest hardening superposition examined by dislocation dynamics simulations[J]. Acta Materialia, 2010, 58 (17): 5586- 5595.
doi: 10.1016/j.actamat.2010.06.028
36 FRIEDEL J . Dislocation[M]. New York: Pergamon Press, 1964.
37 KELLY P M . The effect of particle shape on dispersion hardening[J]. Scripta Metallurgica, 1972, 6 (8): 647- 656.
doi: 10.1016/0036-9748(72)90120-2
38 SCHUELLER R D , WAWNER F E , SACHDEV A K . Strengthening potential of the cubic σ precipitate in Al-Cu-Mg-Si alloys[J]. Journal of Materials Science, 1994, 29 (1): 239- 249.
doi: 10.1007/BF00356599
39 GEROLD V. Precipitation hardening[M]//Nabarro F R N.Dislocations in solids.Amsterdam: North-Holland Publishing Company, 1979, 4: 219-260.
40 FERGUSON J B , LOPEZ H , KONGSHAUG D , et al. Revised Orowan strengthening:effective interparticle spacing and strain field considerations[J]. Metallurgical and Materials Transactions A, 2012, 43 (6): 2110- 2115.
doi: 10.1007/s11661-011-1029-9
41 NIE J F . Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys[J]. Scripta Materialia, 2003, 48 (8): 1009- 1015.
doi: 10.1016/S1359-6462(02)00497-9
42 WIKINSON D S , MAIRE E , FOUGERES R . A model for damage in a clustered particulate composite[J]. Materials Science and Engineering:A, 1999, 262 (1/2): 264- 270.
43 SANATY-ZADEH A . Comparison between current models for the strength of particulate-reinforced metal matrix nanocomposites with emphasis on consideration of Hall-Petch effect[J]. Materials Science and Engineering:A, 2012, 531 (1): 112- 118.
44 JOHNSON L , ASHBY M P . The stress at which dislocations multiply in well-annealed metal crystals[J]. Acta Metallurgica, 1968, 16 (2): 219- 225.
doi: 10.1016/0001-6160(68)90117-X
45 TRIVEDI P B , ASAY J R , GUPTA Y M , et al. Influence of grain size on the tensile response of aluminum under plate-impact loading[J]. Journal of Applied Physics, 2007, 102 (8): 1- 9.
46 PANDA K B , RAVI CHANDRAN K S . Synthesis of ductile titanium-titanium boride (Ti-TiB) composites with a beta-titanium matrix:the nature of TiB formation and composite properties[J]. Metallurgical and Materials Transactions A, 2003, 34 (6): 1371- 1385.
doi: 10.1007/s11661-003-0249-z
47 QIN S , ZHANG G . Preparation of high fracture performance SiC particle-6061 Al/6061 Al composite[J]. Materials Science and Engineering:A, 2000, 279 (1): 231- 236.
48 PENG H X . A review of "consolidation effects on tensile properties of an elemental Al matrix composite"[J]. Materials Science and Engineering:A, 2005, 396 (1/2): 1- 2.
49 WIKINSON D S , POMPE W , OESCHNER M . Modeling the mechanical behaviour of heterogeneous multi-phase materials[J]. Progress in Materials Science, 2001, 46 (3/4): 379- 405.
50 HASHIN Z , SHTRIKMAN S . A variational approach to the theory of the elastic behaviour of multiphase materials[J]. Journal of the Mechanics and Physics of Solids, 1963, 11 (2): 127- 140.
doi: 10.1016/0022-5096(63)90060-7
51 YIN L. Composites microstructures with tailored phase contiguity and spatial distribution[D]. Bristol: University of Bristol, 2009.
52 HUANG L J , GENG L , PENG H X , et al. High temperature tensile properties of in situ TiBw/Ti6Al4V composites with a novel network reinforcement architecture[J]. Materials Science and Engineering:A, 2012, 534 (6): 688- 692.
53 KAVEENDRAN B , WANG G S , HUANG L J , et al. In situ (Al3Zr + Al2O3 np)/2024Al metal matrix composites with novel reinforcement distributions fabricated by reaction hot pressing[J]. Journal of Alloys and Compounds, 2013, 581 (51): 16- 22.
54 HUANG T L , LI C , WU G L , et al. Particle stabilization of plastic flow in nanostructured Al-1%Si alloy[J]. Journal of Materials Science, 2014, 49 (19): 6667- 6673.
doi: 10.1007/s10853-014-8338-5
55 TAKEDA K , NAKADA N , TSUCHIYAMA T , et al. Effect of interstitial elements on Hall-Petch coefficient of ferritic iron[J]. ISIJ International, 2008, 48 (8): 1122- 1125.
doi: 10.2355/isijinternational.48.1122
56 RICCARDO CASATI , MAURIZIO VEDANI . Metal matrix composites reinforced by nano-particles-a review[J]. Metals, 2014, 4 (1): 65- 83.
doi: 10.3390/met4010065
57 余勇.氦和位错对HR-2合金力学性能影响的多尺度模拟[D].上海: 上海交通大学, 2008.
57 YU Y. Multiscale simulations of the effect of helium and dislocation on the mechanical properties of HR-2 alloy[D]. Shanghai: Shanghai Jiao Tong University, 2008.
58 MEYERS M A , BENSON D J , VOHRINGER O , et al. Constitutive description of dynamic deformation, physically-based mechanisms[J]. Materials Science and Engineering:A, 2002, 322 (1/2): 194- 216.
59 KOCKS U F , ARGON A S , ASHBY M F . Thermodynamics and kinetics of slip[J]. Progress in Materials Science, 1975, 19, 141- 145.
60 林文松, 李元元. 颗粒强化钢铁基复合材料的研究现状与展望[J]. 粉末冶金工业, 2001, 11 (5): 25- 29.
doi: 10.3969/j.issn.1006-6543.2001.05.004
60 LIN W S , LI Y Y . Development of particulate reinforced steel matrix composites[J]. Powder Metallurgy Industry, 2001, 11 (5): 25- 29.
doi: 10.3969/j.issn.1006-6543.2001.05.004
61 孙志杰, 吴燕, 张佐光. 防弹陶瓷的研究现状与发展趋势[J]. 宇航材料工艺, 2000, 30 (5): 10- 15.
doi: 10.3969/j.issn.1007-2330.2000.05.003
61 SUN Z J , WU Y , ZHANG Z G . Current status and development of ballistic ceramics[J]. Aerospace Materials and Technology, 2000, 30 (5): 10- 15.
doi: 10.3969/j.issn.1007-2330.2000.05.003
62 OKAMOTO H . Al-B (aluminum-boron)[J]. Journal of Phase Equilibria and Diffusion, 2006, 27 (2): 195- 196.
63 ZHAO Y T , ZHANG S L , CHEN G , et al. In-situ (Al2O3+Al3Zr) (np)/Al nanocomposites synthesized by magneto chemical melt reaction[J]. Composites Science and Technology, 2008, 68 (6): 1463- 1470.
doi: 10.1016/j.compscitech.2007.10.036
64 WANG S C , ZHU Z , STARINK M J . Estimation of dislocation densities on cold rolled Al-Mg-Cu-Mn alloys by combination of yield strength data, EBSD and strength models[J]. Journal of Microscopy-Oxford, 2005, 217 (2): 174- 178.
doi: 10.1111/jmi.2005.217.issue-2
65 MIRZA F A , CHEN D L . An analytical model for predicting the yield strength of particulate-reinforced metal matrix nanocomposites with consideration of porosity[J]. Nanoscience and Nanotechnology Letters, 2012, 4 (8): 794- 800.
doi: 10.1166/nnl.2012.1394
[1] 张小丽, 冯晓伟, 申勇峰. D6A钢在轧制过程中的强韧化机理[J]. 材料工程, 2022, 50(4): 172-180.
[2] 魏水淼, 马盼, 季鹏程, 马永超, 王灿, 赵健, 于治水. 高熵合金增材制造研究进展[J]. 材料工程, 2021, 49(10): 1-17.
[3] 陈畅, 张如意, 史思涛, 马奋天. 真空退火对原位Al2O3/Fe-Cr-Ni增强复合材料性能的影响[J]. 材料工程, 2021, 49(1): 89-94.
[4] 王晓辉, 罗海文. 飞机起落架用超高强度不锈钢的研究及应用进展[J]. 材料工程, 2019, 47(9): 1-12.
[5] 史思涛, 陈畅, 郭政, 李国新, 伍勇华, 苏明周, 王会萌. 原料配比对多孔MgO/Fe-Cr-Ni复合材料性能的影响[J]. 材料工程, 2019, 47(4): 167-173.
[6] 马世榜, 夏振伟, 徐杨, 施焕儒, 王旭, 郑越. 激光熔覆原位自生TiC颗粒增强镍基复合涂层的组织与耐磨性[J]. 材料工程, 2017, 45(6): 24-30.
[7] 马世榜, 苏彬彬, 王旭, 夏振伟, 刘敬, 徐杨. 基于激光熔覆SiC/Ni复合涂层的耐磨性[J]. 材料工程, 2016, 44(1): 77-82.
[8] 陈亚光, 蔡晓兰, 王开军, 胡翠, 孙鸿鹏, 乐刚. 高能球磨法制备的CNTs/Al-5%Mg复合材料的力学性能及断裂特性[J]. 材料工程, 2014, 0(11): 55-61.
[9] 杨华, 徐滨士, 董世运, 杜令忠. 纳米颗粒对镍刷镀层抗油润滑沙粒磨损性能的影响及强化机制[J]. 材料工程, 2007, 0(11): 58-61.
[10] 李沛勇, 戴圣龙, 柴世昌, 李裕仁. 新型高阻尼金属材料的研究进展[J]. 材料工程, 2000, 0(1): 38-41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn