Please wait a minute...
 
2222材料工程  2019, Vol. 47 Issue (3): 154-161    DOI: 10.11868/j.issn.1001-4381.2016.001322
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
机械合金化后注射成形制备Cu/Al2O3复合材料的显微组织与力学性能
贺毅强1,2,*(), 徐虎林1,2, 钱晨晨1, 冯立超1,2, 乔斌1,2, 尚峰1,2, 李化强1,2
1 淮海工学院 机械与海洋工程学院, 江苏 连云港 222005
2 江苏省海洋资源开发研究院, 江苏 连云港 222005
Microstructure and mechanical properties of Cu/Al2O3 composite prepared by metal injection molding after mechanical alloying
Yi-qiang HE1,2,*(), Hu-lin XU1,2, Chen-chen QIAN1, Li-chao FENG1,2, Bin QIAO1,2, Feng SHANG1,2, Hua-qiang LI1,2
1 School of Mechanical and Ocean Engineering, Huaihai Institute of Technology, Lianyungang 222005, Jiangsu, China
2 Marine Resources Development Research Institute of Jiangsu, Lianyungang 222005, Jiangsu, China
全文: PDF(11390 KB)   HTML ( 7 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用机械合金化后注射成形制备10%(体积分数,下同)Cu/Al2O3复合材料,研究机械合金化时间、烧结温度对复合材料显微组织和性能的影响,并分析复合材料的增韧机理。结果表明:通过机械合金化10h后注射成形、脱脂、1550℃烧结工艺制备的10% Cu/Al2O3复合材料具有良好的抗弯强度和断裂韧度,分别为532MPa和4.97MPa·m1/2;烧结温度低于1550℃导致原子在固态下扩散能力不足,烧结温度高于1550℃则使颗粒边界移动速率大于孔隙逸出速率,二者都造成复合材料孔隙率增加,而导致材料的强度和韧度下降;机械合金化时间延长使复合材料晶粒细化、Cu与Al2O3之间的结合强度提高,材料强度和硬度提高,但断裂韧度下降;Cu粉末弥散分布于Al2O3基体中,抑制烧结过程中Al2O3晶粒粗化,且使裂纹在扩展过程中遇到延性的Cu产生裂纹桥联和偏转,提高材料的韧度。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
贺毅强
徐虎林
钱晨晨
冯立超
乔斌
尚峰
李化强
关键词 氧化铝注射成形机械合金化增韧复合材料    
Abstract

10%(volume fraction)Cu/Al2O3 composite was prepared by the process of mechanical alloying and powder injection molding, the effect of alloying time and sintering temperature on microstructure and properties of the composite was investigated, and toughening mechanism of the composite was analyzed. The results show that 10%Cu/Al2O3 composite with good bending strength and fracture toughness can be prepared by the process of mechanical alloying for 10h, degreasing and then sintering at 1550℃. Bending strength and fracture toughness of the composite prepared by this process are up to 532MPa and 4.97MPa·m1/2 respectively. Due to weak diffusion of solid atoms for the composite being sintered below 1550℃, and mobility of particle boundaries being higher than pore escaping rate for the composite being sintered above 1550℃, porosity of the composite increases, and which results in strength and fracture toughness decreasing. Extending alloying time brings grain refinement and strong bonding between Cu and Al2O3 which is beneficial to elevate strength and hardness of the composite, while it is harmful to fracture toughness of the composite. Cu powders dispersing in the Al2O3 matrix protect the Al2O3 grains from coarsening during sintering process. And increasing in toughness of ceramic composite can be attributed to crack bridging and crack deflection when the cracks encounter the ductile Cu.

Key wordsalumina    injection molding    mechanical alloying    toughening    composite
收稿日期: 2016-11-07      出版日期: 2019-03-12
中图分类号:  TB333  
基金资助:淮海工学院自然科学基金项目(Z2017001);连云港市第五期"521工程"科研项目(zkk201805);连云港市海燕计划项目(2018-QD-013);江苏省重点研发计划(BE2015100)
通讯作者: 贺毅强     E-mail: ant210@126.com
作者简介: 贺毅强(1981-), 男, 博士, 教授, 研究方向:金属基复合材料, 联系地址:江苏省连云港市海州区苍梧路59号淮海工学院机械工程系202室(222005), E-mail:ant210@126.com
引用本文:   
贺毅强, 徐虎林, 钱晨晨, 冯立超, 乔斌, 尚峰, 李化强. 机械合金化后注射成形制备Cu/Al2O3复合材料的显微组织与力学性能[J]. 材料工程, 2019, 47(3): 154-161.
Yi-qiang HE, Hu-lin XU, Chen-chen QIAN, Li-chao FENG, Bin QIAO, Feng SHANG, Hua-qiang LI. Microstructure and mechanical properties of Cu/Al2O3 composite prepared by metal injection molding after mechanical alloying. Journal of Materials Engineering, 2019, 47(3): 154-161.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.001322      或      http://jme.biam.ac.cn/CN/Y2019/V47/I3/154
Fig.1  实验用粉末的SEM形貌 (a)Al2O3粉末; (b)Cu粉末
Fig.2  不同机械合金化时间下10%Cu/Al2O3复合粉末的显微组织 (a)20min; (b)2h;(c)10h;(d)14h
Fig.3  混炼、注射、脱脂过程中Cu/Al2O3复合材料的显微组织 (a)混炼; (b)注射; (c)溶剂脱脂; (d)热脱脂
Fig.4  Cu/Al2O3复合材料的热脱脂-烧结工艺曲线
Fig.5  不同烧结温度下烧结件断口形貌 (a)1500℃; (b)1550℃; (c)1600℃
Fig.6  10%Cu/Al2O3复合材料1550℃下烧结后的相组成
Fig.7  不同机械合金化时间下10%Cu/Al2O3复合材料的显微组织 (a)20min; (b)2h;(c)10h
Sintering temperature/
Holding time/h Bending strength/
MPa
Vickers hardness
(HV)
Fracture toughness/
(MPa·m1/2)
1500 2.5 454 1124 4.72
1550 2.5 532 1236 4.97
1600 2.5 475 1272 4.79
Table 1  不同烧结温度下10%Cu/Al2O3烧结件的力学性能
Milling time Sintering temperature/℃ Holding time/
h
Bending strength/
MPa
Vickers hardness
(HV)
Fracture toughness/
(MPa·m1/2)
20min 1550 2.5 441 1067 5.29
2h 1550 2.5 455 1104 5.16
10h 1550 2.5 532 1236 4.97
Table 2  不同机械合金化时间下10%Cu/Al2O3烧结件的性能参数
1 范景莲, 刘勋, 黄伯云, 等. Ni、Cu-Al2O3纳米金属陶瓷粉末的热压[J]. 粉末冶金技术, 2005, 23 (2): 120- 124.
doi: 10.3321/j.issn:1001-3784.2005.02.010
1 FAN J L , LIU X , HUANG B Y , et al. Hot pressing of Ni-Al2O3/Cu-Al2O3 cermet nanopowder[J]. Powder Metallurgy Technology, 2005, 23 (2): 120- 124.
doi: 10.3321/j.issn:1001-3784.2005.02.010
2 刘向兵, 贾成厂, 王富祥, 等. 用球化处理的粉末热压制备Cu-Al2O3复合材料[J]. 粉末冶金技术, 2007, 25 (2): 129- 134.
doi: 10.3321/j.issn:1001-3784.2007.02.012
2 LIU X B , JIA C C , WANG F X , et al. Cu-Al2O3 composite fabricated by hot pressing with sphericized powder[J]. Powder Metallurgy Technology, 2007, 25 (2): 129- 134.
doi: 10.3321/j.issn:1001-3784.2007.02.012
3 BAHRAINI M , WEBER L , NARCISO J , et al. Wetting in infiltra-tion of alumina particle preforms with molten copper[J]. Journal of Materials Science, 2005, 40 (9/10): 2487- 2491.
4 刘惠敏, 王楠, 苏娟. 原位Al2O3/Al-Cu复合材料的制备与组织研究[J]. 材料工程, 2014, (11): 23- 27.
doi: 10.11868/j.issn.1001-4381.2014.11.004
4 LIU H M , WANG N , SU J . Preparation and microstructure of in-situ Al2O3/Al-Cu composite[J]. Journal of Materials Engine-ering, 2014, (11): 23- 27.
doi: 10.11868/j.issn.1001-4381.2014.11.004
5 GERMAN R M . Divergences in global powder injection moulding[J]. Powder Injection Moulding International, 2008, 2 (1): 45- 49.
6 ZHANG S X , ONG Z Y , LI T , et al. Ceramic composite comp-onents with gradient porosity by powder injection moulding[J]. Materials & Design, 2010, 31 (6): 2897- 2903.
7 LIANG S H , FAN Z K , XU L , et al. Kinetic analysis on Al2O3/Cu composite prepared by mechanical activation and internal oxidation[J]. Composites Part A:Applied Science and Manufacturing, 2004, 35 (12): 1441- 1446.
doi: 10.1016/j.compositesa.2004.04.008
8 RAZAVI-TOUSI S S , RAD R , SALAHI E , et al. Production of Al-20 wt.% Al2O3 composite powder using high energy milling[J]. Powder Technology, 2009, 192 (3): 346- 351.
doi: 10.1016/j.powtec.2009.01.016
9 ZEBARJAD S M , SAJJADI S A . Microstructure evaluation of Al-Al2O3 composite produced by mechanical alloying method[J]. Materials & Design, 2006, 27 (8): 684- 688.
10 ZHAO N , NASH P , YANG X . The effect of mechanical alloying on SiC distribution and the properties of 6061 aluminum composite[J]. Journal of Materials Processing Technology, 2005, 170 (3): 586- 592.
doi: 10.1016/j.jmatprotec.2005.06.037
11 ZAWRAH M F , ZAYED H A , ESSAWY R A , et al. Prepara-tion by mechanical alloying, characterization and sintering of Cu-20wt.%Al2O3 nanocomposites[J]. Materials & Design, 2013, 46, 485- 490.
12 TOUSI S S R , RAD R Y , SALAHI E , et al. Production of Al-20 wt.% Al2O3 composite powder using high energy milling[J]. Powder Technology, 2009, 192 (3): 346- 351.
doi: 10.1016/j.powtec.2009.01.016
13 ZAWRAH M F , ESSAWY R A , ZAYED H A , et al. Mech-anical alloying, sintering and characterization of Al2O3-20wt%-Cu nanocomposite[J]. Ceramics International, 2014, 40 (1): 31- 38.
doi: 10.1016/j.ceramint.2013.05.099
14 陈振华. 现代粉末冶金技术[M]. 北京: 化学工业出版社, 2013: 245- 246.
14 CHEN Z H . Modern powder metallurgy technology[M]. Beijing: Chemical Industry Press, 2013: 245- 246.
15 CHANDRASEKHAR S B , WAKEKAR N P , RAMAKRISH-NA M , et al. Dynamic strain ageing in fine grained Cu-1wt% Al2O3 composite processed by two step ball milling and spark plasma sintering[J]. Journal of Alloys and Compounds, 2016, 656, 423- 430.
doi: 10.1016/j.jallcom.2015.09.250
16 MADAVALI B , LEE J H , LEE J K , et al. Effects of atmosphere and milling time on the coarsening of copper powders during mechanical milling[J]. Powder Technology, 2014, 256, 251- 256.
doi: 10.1016/j.powtec.2014.02.019
17 CAMPBELL S D , PELLETIER L B , POBER R L , et al. Dim-ensional and formation analysis of a restorative ceramic and how it works[J]. The Journal of Prosthetic Dentistry, 1995, 74 (4): 332- 340.
doi: 10.1016/S0022-3913(05)80370-1
18 SHEHATA F , FATHY A , ABDELHAMEED M , et al. Prep-aration and properties of Al2O3 nanoparticle reinforced copper matrix composites by in situ processing[J]. Materials & Design, 2009, 30 (7): 2756- 2762.
[1] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[2] 孔国强, 安振河, 魏化震, 李莹, 邵蒙, 于秋兵, 纪校君, 李居影, 王康. 碳纤维丝束结构对碳纤维/酚醛复合材料烧蚀性能的影响[J]. 材料工程, 2022, 50(9): 113-119.
[3] 米玉洁, 宋明明, 张存瑞, 张贵恩, 王月祥, 常志敏. 羰基铁室温硫化硅橡胶复合材料的吸波性能[J]. 材料工程, 2022, 50(9): 120-126.
[4] 邢宇, 张代军, 王成博, 倪洪江, 李军, 陈祥宝. PEEK复合材料用碳纤维上浆剂研究进展[J]. 材料工程, 2022, 50(8): 70-81.
[5] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[6] 倪洪江, 邢宇, 戴霄翔, 李军, 张代军, 陈祥宝. 航空发动机用聚酰亚胺树脂基复合材料固化工艺及热稳定性能[J]. 材料工程, 2022, 50(7): 102-109.
[7] 吕双祺, 黄佳, 孙燕涛, 付尧明, 杨晓光, 石多奇. 莫来石纤维增强SiO2气凝胶复合材料压缩回弹性能实验与建模研究[J]. 材料工程, 2022, 50(7): 119-127.
[8] 杨智勇, 臧家俊, 方丹琳, 李翔, 李志强, 李卫京. 城轨列车制动盘SiCp/A356复合材料热疲劳裂纹扩展机理[J]. 材料工程, 2022, 50(7): 165-175.
[9] 彭斌意, 刘洋, 郑晓董, 李治国, 李国平, 胡建波, 王永刚. 激光选区熔化颗粒增强钛基复合材料的抗压性能[J]. 材料工程, 2022, 50(6): 36-48.
[10] 李军, 刘燕峰, 倪洪江, 张代军, 陈祥宝. 航空发动机用树脂基复合材料应用进展与发展趋势[J]. 材料工程, 2022, 50(6): 49-60.
[11] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[12] 于永涛, 刘元军. 原位聚合法制备铁氧体/聚苯胺吸波复合材料的研究进展[J]. 材料工程, 2022, 50(5): 90-99.
[13] 程子敬, 王凯峰, 张连洪. 基于微观尺度X射线断层扫描技术的短切碳纤维SMC复合材料失效分析[J]. 材料工程, 2022, 50(5): 130-138.
[14] 杜宗波, 时双强, 陈宇滨, 褚海荣, 杨程. 介电型石墨烯吸波复合材料研究进展[J]. 材料工程, 2022, 50(4): 74-84.
[15] 任美娟, 王淼, 吴芳辉, 贾虎, 叶明富, 文国强. 氮掺杂多孔碳负载铜钴纳米复合材料的制备及其电催化性能[J]. 材料工程, 2022, 50(4): 104-111.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn