Please wait a minute...
 
材料工程  2016, Vol. 44 Issue (2): 49-55    DOI: 10.11868/j.issn.1001-4381.2016.02.008
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
氮掺杂碳纳米管/铝基复合材料的制备及性能
何卫, 王利民, 蔡炜, 汤超, 姚辉
国网电力科学研究院 武汉南瑞有限责任公司, 武汉 430074
Preparation and Properties of Nitrogen-doped Carbon Nanotubes/Aluminium Matrix Composite
HE Wei, WANG Li-min, CAI Wei, TANG Chao, YAO Hui
Wuhan NARI Co., Ltd., State Grid Electric Power Research Institute, Wuhan 430074, China
全文: PDF(2317 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用化学气相沉积法合成出氮原子掺杂的碳纳米管,再将其与铝基体进行复合制备出碳纳米管/铝基复合材料。运用TEM和XPS研究氮掺杂碳纳米管的结构形貌和掺杂形态,并对碳纳米管/铝基复合材料的力学和电学性能进行研究与分析。结果表明:碳纳米管呈现出竹节状周期性多层结构,且成功掺杂氮原子。与纯碳纳米管相比,基于氮掺杂碳纳米管的铝基复合材料具有更高的抗拉强度和电导率。由于氮原子的引入,改善了碳纳米管的分散度和浸润性,提升了其电子传递效率,从而更有利于其在金属基复合材料中的应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何卫
王利民
蔡炜
汤超
姚辉
关键词 氮掺杂碳纳米管铝基复合材料粉末冶金电导率    
Abstract:The nitrogen-doped carbon nanotubes were synthesized by chemical vapour deposition, and then added into aluminium matrix to get carbon nanotubes/aluminum matrix composites. The structure and doping pattern of the nitrogen-doped carbon nanotubes were characterized by TEM and XPS, and also research and analysis were carried out on the mechanical and electrical properties of the aluminium-based composites. The results show that carbon nanotubes exhibit a periodic multilayer bamboo-like structure and nitrogen atoms are doped successfully. Compared with pure carbon nanotubes, the nitrogen-doped carbon nanotubes/aluminium matrix composite has a higher tensile strength and electrical conductivity. The incorporation of nitrogen atoms improves the dispersion and wetting characteristic of carbon nanotubes, enhances its efficiency of electron transfer, and thus benefits its applications in metal matrix composites.
Key wordsnitrogen-doped carbon nanotube    aluminium matrix composite    powder metallurgy    electrical conductivity
收稿日期: 2015-01-26      出版日期: 2016-02-22
中图分类号:  TB331  
通讯作者: 何卫(1986-),男,工程师,博士,现从事碳纳米管改性铝合金材料的研制及其应用技术研究,联系地址:武汉市洪山区珞瑜路143号(430074),E-mail:hewei7@sgepri.sgcc.com.cn     E-mail: hewei7@sgepri.sgcc.com.cn
引用本文:   
何卫, 王利民, 蔡炜, 汤超, 姚辉. 氮掺杂碳纳米管/铝基复合材料的制备及性能[J]. 材料工程, 2016, 44(2): 49-55.
HE Wei, WANG Li-min, CAI Wei, TANG Chao, YAO Hui. Preparation and Properties of Nitrogen-doped Carbon Nanotubes/Aluminium Matrix Composite. Journal of Materials Engineering, 2016, 44(2): 49-55.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.02.008      或      http://jme.biam.ac.cn/CN/Y2016/V44/I2/49
[1] BAKSHI S R, LAHIRI D, AGARWAL A. Carbon nanotube reinforced metal matrix composites-A review[J]. International Materials Reviews, 2010, 55(1):41-64.
[2] BOESL B, LAHIRI D, BEHDAD S, et al. Direct observation of carbon nanotube induced strengthening in aluminum composite via in situ tensile tests[J]. Carbon, 2014, 69:79-85.
[3] HJORTSTAM O, ISBERG P, ODERHOLM S S, et al. Can we achieve ultra-low resistivity in carbon nanotube-based metal composites?[J]. Applied Physics A, 2004,(78):1175-1179.
[4] SONG H, ZHA X. Influence of nickel coating on the interfacial bonding characteristics of carbon nanotube-aluminum composites[J]. Computational Materials Science, 2010, 49(4):899-903.
[5] 曹茂盛,邱成军,朱静. 碳纳米管表面修饰的研究进展[J]. 航空材料学报, 2003, 23(4):59-62. CAO M S, QIU C J, ZHU J. Recent development on surface decoration of carbon nanotubes[J]. Journal of Aeronautical Materials, 2003, 23(4):59-62.
[6] TJONG S C. Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets[J]. Materials Science and Engineering:Reports, 2013, 74(10):281-350.
[7] CHIZARI K, SUNDARARAJ U. The effects of catalyst on the morphology and physicochemical properties of nitrogen-doped carbon nanotubes[J]. Materials Letters, 2014, 116:289-292.
[8] KANETO K, TSURUTA M, SAKAI G, et al. Electrical conductivities of multi-wall carbon nanotubes[J]. Synthetic Metals, 1999, 103(1-3):2543-2546.
[9] WEI J, HU H, ZENG H, et al. Effects of nitrogen substitutional doping on the electronic transport of carbon nanotube[J]. Physica E:Low-dimensional Systems and Nanostructures, 2008, 40(3):462-466.
[10] KANNINEN P, BORGHEI M, SORSA O, et al. Highly efficient cathode catalyst layer based on nitrogen-doped carbon nanotubes for the alkaline direct methanol fuel cell[J]. Applied Catalysis B:Environmental, 2014, 156-157:341-349.
[11] CHEN X, WAN L, HUANG J, et al. Nitrogen-containing carbon nanostructures:A promising carrier for catalysis of ammonia borane dehydrogenation[J]. Carbon, 2014, 68:462-472.
[12] 张宇,温斌,宋肖阳,等. 不同氮掺杂浓度碳纳米管的制备及其成键特性分析[J]. 物理学报, 2010, 59(5):3583-3588. ZHANG Y, WEN B, SONG X Y, et al. Synthesis and bonding properties of carbon nanotubes with different nitrogen contents[J]. Acta Physica Sinica, 2010, 59(5):3583-3588.
[13] WEI H, LI Z, XIONG D, et al. Towards strong and stiff carbon nanotube-reinforced high-strength aluminum alloy composites through a microlaminated architecture design[J]. Scripta Materialia, 2014, 75:30-33.
[14] 李玲,林奎,张帆,等. 氮掺杂长竹节状碳纳米管的制备及其生长机理[J]. 无机化学学报, 2014,(5):1097-1103. LI L, LIN K, ZHANG F, et al. Preparation of N-doped long bamboo-like carbon nanotubes and their growth mechanism[J]. Chinese Journal of Inorganic Chemistry, 2014,(5):1097-1103.
[15] CHANG S, LI T, LIN T. Significant morphology dependence on nitrogen proportion in growing carbon nanotubes[J]. Materials Letters, 2008, 62(12-13):1893-1895.
[16] ZHANG Y, LIU C, WEN B, et al. Preparation and electrochemical properties of nitrogen-doped multi-walled carbon nanotubes[J]. Materials Letters, 2011, 65(1):49-52.
[17] 陈亚光,蔡晓兰,王开军,等. 高能球磨法制备的CNTs/Al-5%Mg复合材料的力学性能及断裂特性[J]. 材料工程, 2014,(11):55-61. CHEN Y G, CAI X L, WANG K J, et al. Mechanical properties and fracture feature of CNTS/Al-5%Mg composite prepared by high-energy ball milling[J]. Journal of Materials Engineering, 2014,(11):55-61.
[18] LIU Q, PU Z, ASIRI A M, et al. Bamboo-like nitrogen-doped carbon nanotubes toward fluorescence recovery assay for DNA detection[J]. Sensors and Actuators B:Chemical, 2015, 206:37-42.
[19] CHIZARI K, VENA A, LAURENTIUS L, et al. The effect of temperature on the morphology and chemical surface properties of nitrogen-doped carbon nanotubes[J]. Carbon, 2014, 68:369-379.
[20] 李莉香,刘永长,耿新,等. 氮掺杂碳纳米管的制备及其电化学性能[J]. 物理化学学报, 2011, 27(2):443-448. LI L X, LIU Y C, GENG X, et al. Synthesis and electrochemical performance of nitrogen-doped carbon nanotubes[J]. Acta Physic-Chimica Sinica, 2011, 27(2):443-448.
[21] ESAWI A M K, MORSI K, SAYED A, et al. Fabrication and properties of dispersed carbon nanotube-aluminum composites[J]. Materials Science and Engineering:A, 2009, 508(1-2):167-173.
[22] 高伟洁,郭淑静,张洪波,等. 氮掺杂碳纳米管对其负载的Ru催化剂上合成氨的促进作用[J]. 催化学报, 2011, 32(8):1418-1423. GAO W J, GUO S J, ZHANG H B, et al. Enhanced ammonia synthesis activity of Ru supported on nitrogen-doped carbon nanotubes[J]. Chinese Journal of Catalysis, 2011, 32(8):1418-1423.
[23] GEORGE R, KASHYAP K T, RAHUL R, et al. Strengthening in carbon nanotubealuminium(CNTAl) composites[J]. Scripta Materialia, 2005, 53:1159-1163.
[24] XU C L, WEI B Q, MA R Z, et al. Fabrication of aluminum-carbon nanotube composites and their electrical properties[J]. Carbon, 1999, 37(5):855-858.
[25] UDDIN S M, MAHMUD T, WOLF C, et al. Effect of size and shape of metal particles to improve hardness and electrical properties of carbon nanotube reinforced copper and copper alloy composites[J]. Composites Science and Technology, 2010, 70(16):2253-2257.
[26] LIU Z Y, XIAO B L, WANG W G, et al. Tensile strength and electrical conductivity of carbon nanotube reinforced aluminum matrix composites fabricated by powder metallurgy combined with friction stir processing[J]. Journal of Materials Science & Technology, 2014, 30(7):649-655.
[27] MOUSAVI H, MORADIAN R. Nitrogen and boron doping effects on the electrical conductivity of graphene and nanotube[J]. Solid State Sciences, 2011, 13(8):1459-1464.
[28] 梁彤祥,刘娟,王晨. 石墨烯的电子结构及其应用进展[J]. 材料工程, 2014,(6):89-96. LIANG T X, LIU J, WANG C. Electronic structure of graphene and its application advances[J]. Journal of Materials Engineering, 2014,(6):89-96.
[29] 李静. 硼掺杂碳纳米管的制备及其在镁基复合材料中的应用[D]. 天津:天津大学, 2011.
[30] 王昆鹏,师春生,赵乃勤,等. B(N)掺杂单壁碳纳米管的Al原子吸附性能的第一性原理研究[J]. 物理学报, 2008, 57(12):7833-7840. WANG K P, SHI C S, ZHAO N Q, et al. First-principle study of the effect of boron(nitrogen)-doping on adsorbing characteristics of aluminum on single-walled carbon nanotubes[J]. Acta Physica Sinica, 2008, 57(12):7833-7840.
[31] 赵素,刘政,张新兵. 纳米碳管增强铝基复合材料的工艺及性能研究[J]. 铸造技术, 2006,(2):135-138. ZHAO S, LIU Z, ZHANG X B. Technical process and mechanical properties of carbon nanotubes reinforced aluminum matrix composites[J]. Foundry Technology, 2006,(2):135-138.
[1] 刘媛媛, 李舒婷, 彭军, 安胜利. Gd2O3掺杂量对Ce1-xGdxO2-δ电解质导电性能的影响[J]. 材料工程, 2020, 48(6): 118-124.
[2] 赵辉, 赵菲, 杨长龙, 韩钰, 靳东, 李红英. 时效处理对Al-Zr-Sc(-Er)合金组织和性能的影响[J]. 材料工程, 2020, 48(5): 112-119.
[3] 李明, 康永旺, 郭丰伟. 铌硅基超高温结构材料成形技术研究进展[J]. 材料工程, 2020, 48(11): 58-67.
[4] 张军, 刘崇宇. 粉末冶金法制备CNT和SiC混杂增强铝基复合材料的摩擦磨损性能[J]. 材料工程, 2020, 48(11): 131-139.
[5] 王伟国, 王新福, 汪聃, 郝刚领. 锶镁共掺对Na0.5Bi0.5TiO3氧离子导体电学性能的影响分析[J]. 材料工程, 2019, 47(8): 28-32.
[6] 党赏, 李艳国, 邹芹, 王明智, 熊建超, 罗文奇. 机械合金化和粉末冶金法制备Fe-Mn-Si基形状记忆合金的研究进展[J]. 材料工程, 2019, 47(5): 18-25.
[7] 杨宇凯, 张宝, 王旭东, 张虎生, 武岳, 关永军. 石墨烯及碳化硅增强铝基复合材料的冲击力学行为[J]. 材料工程, 2019, 47(3): 15-22.
[8] 王松林, 徐向棋, 王东生. 微管SOFC复合支撑体NiO/La0.7Ca0.3CrO3-δ的相转化纺丝法制备与性能[J]. 材料工程, 2019, 47(2): 42-48.
[9] 黄凯, 蒋日鹏, 李晓谦, 李瑞卿, 张立华. 超声外场对原位TiB2/2A14铝基复合材料的摩擦磨损性能的影响[J]. 材料工程, 2019, 47(12): 78-84.
[10] 屈盛官, 杨章选, 赖福强, 和锐亮, 付志强, 李小强. 渗铜量对铁基粉末冶金气门座圈材料微动磨损性能的影响[J]. 材料工程, 2018, 46(7): 136-143.
[11] 吴闪, 朱延俊, 赵梦媛, 解昊, 杨星, 边凌锋, 孟彬. Co元素掺杂对CeO2基固态电解质导电行为的影响[J]. 材料工程, 2018, 46(5): 133-138.
[12] 贺毅强, 徐虎林, 钱晨晨, 丁云飞, 冯文, 陈劲松, 李化强, 冯立超. 基体成分对SiCP/Al-Fe-V-Si复合材料显微组织与性能的影响[J]. 材料工程, 2018, 46(12): 124-130.
[13] 马琳, 李伟, 白娇娇, 赵丰停. 粉末冶金Ti-14Mo-2.1Ta-0.9Nb-7Zr合金热变形行为[J]. 材料工程, 2018, 46(10): 47-54.
[14] 杨旭东, 陈亚军, 师春生, 赵乃勤. 球磨工艺对原位合成碳纳米管增强铝基复合材料微观组织和力学性能的影响[J]. 材料工程, 2017, 45(9): 93-100.
[15] 杨旭东, 邹田春, 陈亚军, 王付胜, 何小垒. 碳纳米管和氧化铝混杂增强铝基复合材料的制备及力学性能[J]. 材料工程, 2016, 44(7): 67-72.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn