1 State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China 2 College of Materials Science and Metallurgical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China 3 School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
As a biodegradable material, magnesium alloys has been attracted by more researchers, recently. Due to good biocompatibility, mechanical properties and biodegradable absorption charac-teristics, it has been honored as revolutionary biological materials. However, current bio-magnesium alloy still could not meet the requirements of clinical application, due to its shortcomings of rapid corrosion rate and local corrosion. In this paper, the progress of bio-magnesium alloy in improving the corrosion performance was reviewed from the aspects of high purity, alloying, heat treatment process and surface modification. The paper makes a prospect on how to develop the biodegradable materials with better corrosion performance in terms of adding non-toxic alloying elements, proper surface coating, advanced preparation technology and heat treatment process.
VORMANN J . Magnesium:nutrition and metabolism[J]. Molecular Aspects of Medicine, 2003, 24 (1): 27- 37.
2
KANNAN M B , RAMAN R K S . In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid[J]. Biomaterials, 2008, 29 (15): 2306- 2314.
doi: 10.1016/j.biomaterials.2008.02.003
YUAN G Y , ZHANG X B , NIU J L , et al. Research progress of new type of degradable biomedical magnesium alloys JDBM[J]. Transactions of Nonferrous Metals Society of China, 2011, 21 (10): 2476- 2488.
WANG C , CUI Y J , LIU H Y , et al. Research progress of alloying of biodegradable medical magnesium alloys[J]. Materials Review, 2015, 29 (11): 55- 60.
TAN Z G , ZHOU Q , JIANG Y G . Biodegradable magnesium alloy vascular stent:shortcomings and future research trends[J]. Journal of Clinical Rehabilitative Tissue Engineering Research, 2015, 19 (8): 1284- 1288.
HONG Y S , YANG K , ZHANG G D , et al. Bone induction of degradable magnesium alloy in animals[J]. Acta Metallurgica Sinica, 2008, 44 (9): 1035- 1041.
doi: 10.3321/j.issn:0412-1961.2008.09.003
LI Z , ZHOU S J , ZHAO J . Corrosion behavior of pure magnesium in biomedicine[J]. Hot Working Technology, 2012, 41 (16): 53- 56.
9
CAO F Y , SHI Z M , HOFSTETTER J , et al. Corrosion of ultra-high-purity Mg in 3.5% NaCl solution saturated with Mg(OH)2[J]. Corrosion Science, 2013, 75, 78- 99.
doi: 10.1016/j.corsci.2013.05.018
10
HANAWALT J D , NELSON C E , PELOUBET J A . Corrosion studies of magnesium and its alloys[J]. Transaction of American Institute of Mining, Metallurgical, and Petroleum Engineers, 1942, 147, 273- 299.
REN Y B , HUANG J J , YANG K , et al. Study on bio-corrosion behavior of pure magnesium[J]. Acta Metallurgica Sinica, 2005, 41 (11): 1228- 1232.
doi: 10.3321/j.issn:0412-1961.2005.11.018
12
JOHNSTON S , SHI Z , ATRENS A . The influence of pH on the corrosion rate of high-purity Mg, AZ91 and ZE41 in bicarbonate buffered Hanks' solution[J]. Corrosion Science, 2015, 101, 182- 192.
doi: 10.1016/j.corsci.2015.09.018
13
ABIDIN N I Z , ROLFE B , OWEN H , et al. The invivo and invitro corrosion of high-purity magnesium and magnesium alloys WZ21 and AZ91[J]. Corrosion Science, 2013, 75, 354- 366.
doi: 10.1016/j.corsci.2013.06.019
14
QIAO Z X , SHI Z M , HORT N , et al. Corrosion behaviour of a nominally high purity Mg ingot produced by permanent mould direct chill casting[J]. Corrosion Science, 2012, 61, 185- 207.
doi: 10.1016/j.corsci.2012.04.030
15
PENG Q M , HUANG Y D , ZHOU L , et al. Preparation and properties of high purity Mg-Y biomaterials[J]. Biomaterials, 2010, 31 (3): 398- 403.
doi: 10.1016/j.biomaterials.2009.09.065
16
GU X N , ZHENG Y F , CHENG Y , et al. In vitro corrosion and biocompatibility of binary magnesium alloys[J]. Biomaterials, 2009, 30 (4): 484- 498.
doi: 10.1016/j.biomaterials.2008.10.021
17
SONG G L , STJOHN D . The effect of zirconium grain refinement on the corrosion behaviour of magnesium-rare earth alloy MEZ[J]. Journal of Light Metals, 2002, 2 (1): 1- 16.
doi: 10.1016/S1471-5317(02)00008-1
18
ZONG Y , YUAN G Y , ZHANG X B , et al. Comparison of biodegradable behaviors of AZ31 and Mg-Nd-Zn-Zr alloys in Hank's physiological solution[J]. Materials Science and Engineering:B, 2012, 177 (5): 395- 401.
doi: 10.1016/j.mseb.2011.09.042
19
ZHANG S X , ZHANG X N , ZHAO C L , et al. Research on an Mg-Zn alloy as a degradable biomaterial[J]. Acta Biomaterialia, 2010, 6 (2): 626- 640.
doi: 10.1016/j.actbio.2009.06.028
20
ZAKIYUDDIN A , LEE K . Effect of a small addition of zinc and manganese to Mg-Ca based alloys on degradation behavior in physiological media[J]. Journal of Alloys and Compounds, 2015, 629, 274- 283.
doi: 10.1016/j.jallcom.2014.12.181
21
ZENG R C , QI W C , CUI H Z , et al. In vitro corrosion of as-extruded Mg-Ca alloys-the influence of Ca concentration[J]. Corrosion Science, 2015, 96, 23- 31.
doi: 10.1016/j.corsci.2015.03.018
22
ZANDER D , ZUMDICK N A . Influence of Ca and Zn on the microstructure and corrosion of biodegradable Mg-Ca-Zn alloys[J]. Corrosion Science, 2015, 93, 222- 233.
doi: 10.1016/j.corsci.2015.01.027
23
WANG L , LI J B , LI L , et al. Microstructure, mechanical and bio-corrosion properties of Mg-Zn-Zr alloys with minor Ca addition[J]. Materials Science and Technology, 2017, 33 (1): 9- 16.
24
BORNAPOUR M , MUJA N , SHUM-TIM D , et al. Biocompatibility and biodegradability of Mg-Sr alloys:the formation of Sr-substituted hydroxyapatite[J]. Acta Biomaterialia, 2013, 9 (2): 5319- 5330.
doi: 10.1016/j.actbio.2012.07.045
25
CHENG M X , CHEN J H , YAN H G , et al. Effects of minor Sr addition on microstructure, mechanical and bio-corrosion properties of the Mg-5Zn based alloy system[J]. Journal of Alloys and Compounds, 2017, 691, 95- 102.
doi: 10.1016/j.jallcom.2016.08.164
26
CHEN L X , BIN Y H , ZOU W Q , et al. The influence of Sr on the microstructure, degradation and stress corrosion cracking of the Mg alloys-ZK40xSr[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 66, 187- 200.
doi: 10.1016/j.jmbbm.2016.11.014
27
WANG Y , LIAO Z D , SONG C J , et al. Influence of Nd on microstructure and bio-corrosion rsistance of Mg-Zn-Mn-Ca Alloy[J]. Rare Metal Materials and Engineering, 2013, 42 (4): 661- 666.
doi: 10.1016/S1875-5372(13)60052-1
28
ZHOU Y L , LI Y , LUO D M , et al. Microstructures, mechanical and corrosion properties and biocompatibility of as extruded Mg-Mn-Zn-Nd alloys for biomedical applications[J]. Materials Science and Engineering:C, 2015, 49, 93- 100.
doi: 10.1016/j.msec.2014.12.057
29
ZHANG X , LI Y J , WANG C S , et al. Corrosion and electrochemical behavior of Mg-Y alloys in 3.5% NaCl solution[J]. Transactions of Nonferrous Metals Society of China, 2013, 23 (5): 1226- 1236.
doi: 10.1016/S1003-6326(13)62587-X
30
HE W W , ZHANG E , YANG K . Effect of Y on the bio-corrosion behavior of extruded Mg-Zn-Mn alloy in Hank's solution[J]. Materials Science and Engineering:C, 2010, 30 (1): 167- 174.
doi: 10.1016/j.msec.2009.09.014
31
CHOU D T , HONG D , SAHA P , et al. In vitro and in vivo corrosion, cytocompatibility and mechanical properties of biodegradable Mg-Y-Ca-Zr alloys as implant materials[J]. Acta Biomaterialia, 2013, 9 (10): 8518- 8533.
doi: 10.1016/j.actbio.2013.06.025
32
FEYERABEND F , FISCHER J , HOLTZ J , et al. Evaluation of short-term effects of rare earth and other elements used in magnesium alloys on primary cells and cell lines[J]. Acta Biomaterialia, 2010, 6 (5): 1834- 1842.
doi: 10.1016/j.actbio.2009.09.024
33
RALSTON K D , BIRBILIS N , DAVIES C H J . Revealing the relationship between grain size and corrosion rate of metals[J]. Scripta Materialia, 2010, 63 (12): 1201- 1204.
doi: 10.1016/j.scriptamat.2010.08.035
34
ZHAO M C , LIU M , SONG G L , et al. Influence of the β-phase morphology on the corrosion of the Mg alloy AZ91[J]. Corrosion Science, 2008, 50 (7): 1939- 1953.
doi: 10.1016/j.corsci.2008.04.010
35
BORNAPOUR M , CELIKIN M , PEKGULERYUZ M . Thermal exposure effects on the invitro degradation and mechanical properties of Mg-Sr and Mg-Ca-Sr biodegradable implant alloys and the role of the microstructure[J]. Materials Science and Engineering:C, 2015, 46, 16- 24.
doi: 10.1016/j.msec.2014.10.008
36
LU Y , BRADSHAW A R , CHIU Y L , et al. Effects of secondary phase and grain size on the corrosion of biodegradable Mg-Zn-Ca alloys[J]. Materials Science and Engineering:C, 2015, 48, 480- 486.
doi: 10.1016/j.msec.2014.12.049
37
JI J H , PARK I S , KIM Y K , et al. Influence of heat treatment on biocorrosion and hemocompatibility of biodegradable Mg-35Zn-3Ca alloy[J]. Advances in Materials Science and Engineering, 2015, 2015, 318696.
38
ZHOU W , SHEN T , AUNG N N . Effect of heat treatment on corrosion behaviour of magnesium alloy AZ91D in simulated body fluid[J]. Corrosion Science, 2010, 52 (3): 1035- 1041.
doi: 10.1016/j.corsci.2009.11.030
39
LU Y , BRADSHAW A R , CHIU Y L , et al. The role of precipitates in the bio-corrosion performance of Mg-3Zn in simulated body fluid[J]. Journal of Alloys and Compounds, 2014, 614, 345- 352.
doi: 10.1016/j.jallcom.2014.06.078
40
CHOI H Y , KIM W J . Effect of thermal treatment on the bio-corrosion and mechanical properties of ultrafine-grained ZK60 magnesium alloy[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 51, 291- 301.
doi: 10.1016/j.jmbbm.2015.07.019
ZHANG X B , XUE Y J , WANG Z Z , et al. Effect of heat treatment on mechanical and corrosion properties of NZ30K bio-magnesium alloy[J]. Transactions of Materials and Heat Treatment, 2013, 34 (8): 20- 25.
42
WAN P , TAN L L , YANG K . Surface modification on biodegradable magnesium alloys as orthopedic implant materials to improve the bio-adaptability:a review[J]. Journal of Materials Science and Technology, 2016, 32 (9): 827- 834.
doi: 10.1016/j.jmst.2016.05.003
43
HORNBERGER H , VIRTANEN S , BOCCACCINI A R . Biomedical coatings on magnesium alloys-a review[J]. Acta Biomaterialia, 2012, 8 (7): 2442- 2455.
doi: 10.1016/j.actbio.2012.04.012
44
ZHAO L C , CUI C X , WANG Q Z , et al. Growth characteristics and corrosion resistance of micro-arc oxidation coating on pure magnesium for biomedical applications[J]. Corrosion Science, 2010, 52 (7): 2228- 2234.
doi: 10.1016/j.corsci.2010.03.008
45
LI L H , NARAYANAN T , KIM Y K , et al. Deposition of microarc oxidation-polycaprolactone duplex coating to improve the corrosion resistance of magnesium for biodegradable implants[J]. Thin Solid Films, 2014, 562, 561- 567.
doi: 10.1016/j.tsf.2014.04.004
46
LIU G Y , HU J , DING Z K , et al. Bioactive calcium phosphate coating formed on micro-arc oxidized magnesium by chemical deposition[J]. Applied Surface Science, 2011, 257 (6): 2051- 2057.
doi: 10.1016/j.apsusc.2010.09.050
47
CHEN X B , BIRBILIS N , ABBOTT T B . A simple route towards a hydroxyapatite-Mg (OH)2 conversion coating for magnesium[J]. Corrosion Science, 2011, 53 (6): 2263- 2268.
doi: 10.1016/j.corsci.2011.03.008
48
LEI T , OUYANG C , TANG W , et al. Enhanced corrosion protection of MgO coatings on magnesium alloy deposited by an anodic electrodeposition process[J]. Corrosion Science, 2010, 52 (10): 3504- 3508.
doi: 10.1016/j.corsci.2010.06.028
49
MA X , ZHU S J , WANG L G , et al. Synthesis and properties of a bio-composite coating formed on magnesium alloy by one-step method of micro-arc oxidation[J]. Journal of Alloys and Compounds, 2014, 590, 247- 253.
doi: 10.1016/j.jallcom.2013.12.145
50
YU Y D , KUANG S Z , LI J . Influence of applied voltage and film-formation time on microstructure and corrosion resistance of coatings formed on Mg-Zn-Zr-Ca Bio-magnesium alloy[J]. The Journal of The Minerals, Metals and Materials Society, 2015, 67 (9): 2133- 2144.
doi: 10.1007/s11837-015-1528-z
51
LI M , CHENG Y , ZHENG Y F , et al. Surface characteristics and corrosion behaviour of WE43 magnesium alloy coated by SiC film[J]. Applied Surface Science, 2012, 258 (7): 3074- 3081.
doi: 10.1016/j.apsusc.2011.11.040