Please wait a minute...
 
2222材料工程  2020, Vol. 48 Issue (1): 19-26    DOI: 10.11868/j.issn.1001-4381.2017.000301
  综述 本期目录 | 过刊浏览 | 高级检索 |
生物医用镁合金腐蚀行为的研究进展
万天1,2, 宋述鹏1,2,*(), 王今朝3, 周和荣2, 毛雨旭2, 熊少聪2, 李梦君2
1 武汉科技大学 省部共建耐火材料与冶金国家重点实验室, 武汉 430081
2 武汉科技大学 材料与冶金学院, 武汉 430081
3 湖北大学 材料科学与工程学院, 武汉 430062
Research progress in corrosion behavior of biomedical magnesium alloys
Tian WAN1,2, Shu-peng SONG1,2,*(), Jin-zhao WANG3, He-rong ZHOU2, Yu-xu MAO2, Shao-cong XIONG2, Meng-jun LI2
1 State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
2 College of Materials Science and Metallurgical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
3 School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
全文: PDF(2205 KB)   HTML ( 8 )  
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 

近年来,镁合金作为生物可降解材料受到了越来越多研究者的关注,由于其具有良好的生物相容性、力学性能及可降解吸收等特点,被誉为一种"革命性的生物材料"。然而,由于腐蚀速率过快和存在局部腐蚀的缺点,目前的生物镁合金仍达不到临床应用的要求。本文从高纯化、合金化、热处理工艺、表面改性等方面综述了最近几年生物镁合金在提高腐蚀性能方面的研究进展,并从添加无毒性合金元素,适当的表面涂覆,先进的制备技术及热处理工艺方面,对如何研制出腐蚀性能更好的生物可降解材料进行了展望。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
万天
宋述鹏
王今朝
周和荣
毛雨旭
熊少聪
李梦君
关键词 镁合金可降解生物相容性合金化腐蚀性能    
Abstract

As a biodegradable material, magnesium alloys has been attracted by more researchers, recently. Due to good biocompatibility, mechanical properties and biodegradable absorption charac-teristics, it has been honored as revolutionary biological materials. However, current bio-magnesium alloy still could not meet the requirements of clinical application, due to its shortcomings of rapid corrosion rate and local corrosion. In this paper, the progress of bio-magnesium alloy in improving the corrosion performance was reviewed from the aspects of high purity, alloying, heat treatment process and surface modification. The paper makes a prospect on how to develop the biodegradable materials with better corrosion performance in terms of adding non-toxic alloying elements, proper surface coating, advanced preparation technology and heat treatment process.

Key wordsmagnesium alloy    biodegradability    biocompatibility    alloying    corrosion performance
收稿日期: 2017-03-16      出版日期: 2020-01-09
中图分类号:  R318.08  
基金资助:国家自然科学基金资助项目(50901053);湖北省自然科学基金资助项目(2014CFB799);国家级大学生创新创业训练计划项目(201910488002)
通讯作者: 宋述鹏     E-mail: spsong@wust.edu.cn
作者简介: 宋述鹏(1979—), 男, 副教授, 博士, 研究方向:金属基生物材料的制备及性能研究, 联系地址:湖北省武汉市青山区和平大道947号武汉科技大学材料与冶金学院(430081), E-mail:spsong@wust.edu.cn
引用本文:   
万天, 宋述鹏, 王今朝, 周和荣, 毛雨旭, 熊少聪, 李梦君. 生物医用镁合金腐蚀行为的研究进展[J]. 材料工程, 2020, 48(1): 19-26.
Tian WAN, Shu-peng SONG, Jin-zhao WANG, He-rong ZHOU, Yu-xu MAO, Shao-cong XIONG, Meng-jun LI. Research progress in corrosion behavior of biomedical magnesium alloys. Journal of Materials Engineering, 2020, 48(1): 19-26.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.000301      或      http://jme.biam.ac.cn/CN/Y2020/V48/I1/19
Element Composition(mass fraction/%) Corrosion resistance Conditions &values Optimum(mass fraction/%) Ref.
Zn Mg-6Zn Average corrosion rate is from 0.1 mm/a to0.07 mm/a [19]
Mg-0.5Ca-0.5Zn Current density is from 1.96×10-5 A/cm2 to 3.06×10-5 A/cm2 [20]
Ca Mg-xCa(x=0.5, 0.79, 1.35) ↑ and then ↓ Minimum current density is 9.98×10-5 A/cm2 0.79 [21]
Mg-xCa-0.8Zn(x=0.6, 1.6) Current density is from 3.5×10-6 A/cm2to 5×10-6 A/cm2 0.6 [22]
Mg-3Zn-0.3Zr-xCa(x=0-0.9) ↑ and then ↓ Minimum current density is 1.07×10-5 A/cm2 0.6 [23]
Sr Mg-xSr(x=0.3-2.5) ↑ and then ↓ Minimum average corrosion rate is 2 mg/(cm2·d) 0.5 [24]
Mg-5Zn-xSr(x=0-1) ↑ and then ↓ Minimum current density is 2.2×10-5 A/cm2 0.2 [25]
Mg-4Zn-0.6Zr-xSr(x=0-1.6) Minimum average corrosion rate is 2.2 mg/(cm2·d) 0 [26]
Nd Mg-6Zn-1Mn-0.5Ca-0.4Nd Average corrosion rate is from 12.42 mm/a to 10.98 mm/a [27]
Mg-1Mn-2Zn-xNd(x=0.5, 1, 1.5) ↑ and then ↓ Minimum average corrosion rate is 4.93 mm/a 1 [28]
Y Mg-xY(x=0.25, 8, 15) 0.25 [29]
Mg-0.7Mn-2Zn-0.4Y [30]
Mg-xY-0.6Ca-0.4Zr(x=1, 4) Average corrosion rate is from 0.72 mm/a to 0.46 mm/a 4 [31]
Table 1  常用合金元素对镁合金耐蚀性的影响[19-31]
Fig.1  Nd添加前后Mg-Zn-Mn-Ca合金在模拟体液中的析氢腐蚀速率[27]
Fig.2  铸造和固溶处理后部分MgZnCa合金的显微结构[36]
(a)360 ℃/24 h; (b)400 ℃/24 h; (c)420 ℃/24 h; (d)420 ℃/48 h
Fig.3  动电位极化曲线[49]
Fig.4  SiC涂覆WE43合金在模拟体液中的腐蚀机理[51]
(a)SiC涂覆WE43合金在模拟体液中的腐蚀过程示意图;(b)挤压态WE43合金的金相图;(c)SiC层表面腐蚀产物X射线衍射图
1 VORMANN J . Magnesium:nutrition and metabolism[J]. Molecular Aspects of Medicine, 2003, 24 (1): 27- 37.
2 KANNAN M B , RAMAN R K S . In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid[J]. Biomaterials, 2008, 29 (15): 2306- 2314.
doi: 10.1016/j.biomaterials.2008.02.003
3 袁广银, 章晓波, 牛佳林, 等. 新型可降解生物医用镁合金JDBM的研究进展[J]. 中国有色金属学报, 2011, 21 (10): 2476- 2488.
3 YUAN G Y , ZHANG X B , NIU J L , et al. Research progress of new type of degradable biomedical magnesium alloys JDBM[J]. Transactions of Nonferrous Metals Society of China, 2011, 21 (10): 2476- 2488.
4 袁广银, 张佳, 丁文江. 可降解医用镁基生物材料的研究进展[J]. 中国材料进展, 2011, 30 (2): 44- 50.
4 YUAN G Y , ZHANG J , DING W J . Research progress of biodegradable medical magnesium-based biomaterials[J]. Materials China, 2011, 30 (2): 44- 50.
5 王昌, 崔亚军, 刘汉源, 等. 可生物降解医用镁合金的合金化研究进展[J]. 材料导报, 2015, 29 (11): 55- 60.
5 WANG C , CUI Y J , LIU H Y , et al. Research progress of alloying of biodegradable medical magnesium alloys[J]. Materials Review, 2015, 29 (11): 55- 60.
6 谭志刚, 周倩, 蒋宇钢. 生物可降解镁合金血管支架:缺点及未来研究趋势[J]. 中国组织工程研究, 2015, 19 (8): 1284- 1288.
6 TAN Z G , ZHOU Q , JIANG Y G . Biodegradable magnesium alloy vascular stent:shortcomings and future research trends[J]. Journal of Clinical Rehabilitative Tissue Engineering Research, 2015, 19 (8): 1284- 1288.
7 洪岩松, 杨柯, 张广道, 等. 可降解镁合金的动物体内骨诱导作用[J]. 金属学报, 2008, 44 (9): 1035- 1041.
doi: 10.3321/j.issn:0412-1961.2008.09.003
7 HONG Y S , YANG K , ZHANG G D , et al. Bone induction of degradable magnesium alloy in animals[J]. Acta Metallurgica Sinica, 2008, 44 (9): 1035- 1041.
doi: 10.3321/j.issn:0412-1961.2008.09.003
8 李智, 周世杰, 赵炯. 生物医用纯镁的腐蚀性能研究[J]. 热加工工艺, 2012, 41 (16): 53- 56.
8 LI Z , ZHOU S J , ZHAO J . Corrosion behavior of pure magnesium in biomedicine[J]. Hot Working Technology, 2012, 41 (16): 53- 56.
9 CAO F Y , SHI Z M , HOFSTETTER J , et al. Corrosion of ultra-high-purity Mg in 3.5% NaCl solution saturated with Mg(OH)2[J]. Corrosion Science, 2013, 75, 78- 99.
doi: 10.1016/j.corsci.2013.05.018
10 HANAWALT J D , NELSON C E , PELOUBET J A . Corrosion studies of magnesium and its alloys[J]. Transaction of American Institute of Mining, Metallurgical, and Petroleum Engineers, 1942, 147, 273- 299.
11 任伊宾, 黄晶晶, 杨柯, 等. 纯镁的生物腐蚀研究[J]. 金属学报, 2005, 41 (11): 1228- 1232.
doi: 10.3321/j.issn:0412-1961.2005.11.018
11 REN Y B , HUANG J J , YANG K , et al. Study on bio-corrosion behavior of pure magnesium[J]. Acta Metallurgica Sinica, 2005, 41 (11): 1228- 1232.
doi: 10.3321/j.issn:0412-1961.2005.11.018
12 JOHNSTON S , SHI Z , ATRENS A . The influence of pH on the corrosion rate of high-purity Mg, AZ91 and ZE41 in bicarbonate buffered Hanks' solution[J]. Corrosion Science, 2015, 101, 182- 192.
doi: 10.1016/j.corsci.2015.09.018
13 ABIDIN N I Z , ROLFE B , OWEN H , et al. The in vivo and in vitro corrosion of high-purity magnesium and magnesium alloys WZ21 and AZ91[J]. Corrosion Science, 2013, 75, 354- 366.
doi: 10.1016/j.corsci.2013.06.019
14 QIAO Z X , SHI Z M , HORT N , et al. Corrosion behaviour of a nominally high purity Mg ingot produced by permanent mould direct chill casting[J]. Corrosion Science, 2012, 61, 185- 207.
doi: 10.1016/j.corsci.2012.04.030
15 PENG Q M , HUANG Y D , ZHOU L , et al. Preparation and properties of high purity Mg-Y biomaterials[J]. Biomaterials, 2010, 31 (3): 398- 403.
doi: 10.1016/j.biomaterials.2009.09.065
16 GU X N , ZHENG Y F , CHENG Y , et al. In vitro corrosion and biocompatibility of binary magnesium alloys[J]. Biomaterials, 2009, 30 (4): 484- 498.
doi: 10.1016/j.biomaterials.2008.10.021
17 SONG G L , STJOHN D . The effect of zirconium grain refinement on the corrosion behaviour of magnesium-rare earth alloy MEZ[J]. Journal of Light Metals, 2002, 2 (1): 1- 16.
doi: 10.1016/S1471-5317(02)00008-1
18 ZONG Y , YUAN G Y , ZHANG X B , et al. Comparison of biodegradable behaviors of AZ31 and Mg-Nd-Zn-Zr alloys in Hank's physiological solution[J]. Materials Science and Engineering:B, 2012, 177 (5): 395- 401.
doi: 10.1016/j.mseb.2011.09.042
19 ZHANG S X , ZHANG X N , ZHAO C L , et al. Research on an Mg-Zn alloy as a degradable biomaterial[J]. Acta Biomaterialia, 2010, 6 (2): 626- 640.
doi: 10.1016/j.actbio.2009.06.028
20 ZAKIYUDDIN A , LEE K . Effect of a small addition of zinc and manganese to Mg-Ca based alloys on degradation behavior in physiological media[J]. Journal of Alloys and Compounds, 2015, 629, 274- 283.
doi: 10.1016/j.jallcom.2014.12.181
21 ZENG R C , QI W C , CUI H Z , et al. In vitro corrosion of as-extruded Mg-Ca alloys-the influence of Ca concentration[J]. Corrosion Science, 2015, 96, 23- 31.
doi: 10.1016/j.corsci.2015.03.018
22 ZANDER D , ZUMDICK N A . Influence of Ca and Zn on the microstructure and corrosion of biodegradable Mg-Ca-Zn alloys[J]. Corrosion Science, 2015, 93, 222- 233.
doi: 10.1016/j.corsci.2015.01.027
23 WANG L , LI J B , LI L , et al. Microstructure, mechanical and bio-corrosion properties of Mg-Zn-Zr alloys with minor Ca addition[J]. Materials Science and Technology, 2017, 33 (1): 9- 16.
24 BORNAPOUR M , MUJA N , SHUM-TIM D , et al. Biocompatibility and biodegradability of Mg-Sr alloys:the formation of Sr-substituted hydroxyapatite[J]. Acta Biomaterialia, 2013, 9 (2): 5319- 5330.
doi: 10.1016/j.actbio.2012.07.045
25 CHENG M X , CHEN J H , YAN H G , et al. Effects of minor Sr addition on microstructure, mechanical and bio-corrosion properties of the Mg-5Zn based alloy system[J]. Journal of Alloys and Compounds, 2017, 691, 95- 102.
doi: 10.1016/j.jallcom.2016.08.164
26 CHEN L X , BIN Y H , ZOU W Q , et al. The influence of Sr on the microstructure, degradation and stress corrosion cracking of the Mg alloys-ZK40xSr[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 66, 187- 200.
doi: 10.1016/j.jmbbm.2016.11.014
27 WANG Y , LIAO Z D , SONG C J , et al. Influence of Nd on microstructure and bio-corrosion rsistance of Mg-Zn-Mn-Ca Alloy[J]. Rare Metal Materials and Engineering, 2013, 42 (4): 661- 666.
doi: 10.1016/S1875-5372(13)60052-1
28 ZHOU Y L , LI Y , LUO D M , et al. Microstructures, mechanical and corrosion properties and biocompatibility of as extruded Mg-Mn-Zn-Nd alloys for biomedical applications[J]. Materials Science and Engineering:C, 2015, 49, 93- 100.
doi: 10.1016/j.msec.2014.12.057
29 ZHANG X , LI Y J , WANG C S , et al. Corrosion and electrochemical behavior of Mg-Y alloys in 3.5% NaCl solution[J]. Transactions of Nonferrous Metals Society of China, 2013, 23 (5): 1226- 1236.
doi: 10.1016/S1003-6326(13)62587-X
30 HE W W , ZHANG E , YANG K . Effect of Y on the bio-corrosion behavior of extruded Mg-Zn-Mn alloy in Hank's solution[J]. Materials Science and Engineering:C, 2010, 30 (1): 167- 174.
doi: 10.1016/j.msec.2009.09.014
31 CHOU D T , HONG D , SAHA P , et al. In vitro and in vivo corrosion, cytocompatibility and mechanical properties of biodegradable Mg-Y-Ca-Zr alloys as implant materials[J]. Acta Biomaterialia, 2013, 9 (10): 8518- 8533.
doi: 10.1016/j.actbio.2013.06.025
32 FEYERABEND F , FISCHER J , HOLTZ J , et al. Evaluation of short-term effects of rare earth and other elements used in magnesium alloys on primary cells and cell lines[J]. Acta Biomaterialia, 2010, 6 (5): 1834- 1842.
doi: 10.1016/j.actbio.2009.09.024
33 RALSTON K D , BIRBILIS N , DAVIES C H J . Revealing the relationship between grain size and corrosion rate of metals[J]. Scripta Materialia, 2010, 63 (12): 1201- 1204.
doi: 10.1016/j.scriptamat.2010.08.035
34 ZHAO M C , LIU M , SONG G L , et al. Influence of the β-phase morphology on the corrosion of the Mg alloy AZ91[J]. Corrosion Science, 2008, 50 (7): 1939- 1953.
doi: 10.1016/j.corsci.2008.04.010
35 BORNAPOUR M , CELIKIN M , PEKGULERYUZ M . Thermal exposure effects on the in vitro degradation and mechanical properties of Mg-Sr and Mg-Ca-Sr biodegradable implant alloys and the role of the microstructure[J]. Materials Science and Engineering:C, 2015, 46, 16- 24.
doi: 10.1016/j.msec.2014.10.008
36 LU Y , BRADSHAW A R , CHIU Y L , et al. Effects of secondary phase and grain size on the corrosion of biodegradable Mg-Zn-Ca alloys[J]. Materials Science and Engineering:C, 2015, 48, 480- 486.
doi: 10.1016/j.msec.2014.12.049
37 JI J H , PARK I S , KIM Y K , et al. Influence of heat treatment on biocorrosion and hemocompatibility of biodegradable Mg-35Zn-3Ca alloy[J]. Advances in Materials Science and Engineering, 2015, 2015, 318696.
38 ZHOU W , SHEN T , AUNG N N . Effect of heat treatment on corrosion behaviour of magnesium alloy AZ91D in simulated body fluid[J]. Corrosion Science, 2010, 52 (3): 1035- 1041.
doi: 10.1016/j.corsci.2009.11.030
39 LU Y , BRADSHAW A R , CHIU Y L , et al. The role of precipitates in the bio-corrosion performance of Mg-3Zn in simulated body fluid[J]. Journal of Alloys and Compounds, 2014, 614, 345- 352.
doi: 10.1016/j.jallcom.2014.06.078
40 CHOI H Y , KIM W J . Effect of thermal treatment on the bio-corrosion and mechanical properties of ultrafine-grained ZK60 magnesium alloy[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 51, 291- 301.
doi: 10.1016/j.jmbbm.2015.07.019
41 章晓波, 薛亚军, 王章忠, 等. 热处理对NZ30K生物镁合金力学和腐蚀性能的影响[J]. 材料热处理学报, 2013, 34 (8): 20- 25.
41 ZHANG X B , XUE Y J , WANG Z Z , et al. Effect of heat treatment on mechanical and corrosion properties of NZ30K bio-magnesium alloy[J]. Transactions of Materials and Heat Treatment, 2013, 34 (8): 20- 25.
42 WAN P , TAN L L , YANG K . Surface modification on biodegradable magnesium alloys as orthopedic implant materials to improve the bio-adaptability:a review[J]. Journal of Materials Science and Technology, 2016, 32 (9): 827- 834.
doi: 10.1016/j.jmst.2016.05.003
43 HORNBERGER H , VIRTANEN S , BOCCACCINI A R . Biomedical coatings on magnesium alloys-a review[J]. Acta Biomaterialia, 2012, 8 (7): 2442- 2455.
doi: 10.1016/j.actbio.2012.04.012
44 ZHAO L C , CUI C X , WANG Q Z , et al. Growth characteristics and corrosion resistance of micro-arc oxidation coating on pure magnesium for biomedical applications[J]. Corrosion Science, 2010, 52 (7): 2228- 2234.
doi: 10.1016/j.corsci.2010.03.008
45 LI L H , NARAYANAN T , KIM Y K , et al. Deposition of microarc oxidation-polycaprolactone duplex coating to improve the corrosion resistance of magnesium for biodegradable implants[J]. Thin Solid Films, 2014, 562, 561- 567.
doi: 10.1016/j.tsf.2014.04.004
46 LIU G Y , HU J , DING Z K , et al. Bioactive calcium phosphate coating formed on micro-arc oxidized magnesium by chemical deposition[J]. Applied Surface Science, 2011, 257 (6): 2051- 2057.
doi: 10.1016/j.apsusc.2010.09.050
47 CHEN X B , BIRBILIS N , ABBOTT T B . A simple route towards a hydroxyapatite-Mg (OH)2 conversion coating for magnesium[J]. Corrosion Science, 2011, 53 (6): 2263- 2268.
doi: 10.1016/j.corsci.2011.03.008
48 LEI T , OUYANG C , TANG W , et al. Enhanced corrosion protection of MgO coatings on magnesium alloy deposited by an anodic electrodeposition process[J]. Corrosion Science, 2010, 52 (10): 3504- 3508.
doi: 10.1016/j.corsci.2010.06.028
49 MA X , ZHU S J , WANG L G , et al. Synthesis and properties of a bio-composite coating formed on magnesium alloy by one-step method of micro-arc oxidation[J]. Journal of Alloys and Compounds, 2014, 590, 247- 253.
doi: 10.1016/j.jallcom.2013.12.145
50 YU Y D , KUANG S Z , LI J . Influence of applied voltage and film-formation time on microstructure and corrosion resistance of coatings formed on Mg-Zn-Zr-Ca Bio-magnesium alloy[J]. The Journal of The Minerals, Metals and Materials Society, 2015, 67 (9): 2133- 2144.
doi: 10.1007/s11837-015-1528-z
51 LI M , CHENG Y , ZHENG Y F , et al. Surface characteristics and corrosion behaviour of WE43 magnesium alloy coated by SiC film[J]. Applied Surface Science, 2012, 258 (7): 3074- 3081.
doi: 10.1016/j.apsusc.2011.11.040
[1] 潘士伟, 王自东, 陈晓华, 王艳林, 陈凯旋, 朱谕至. 锆微合金化增强铝合金的研究进展[J]. 材料工程, 2022, 50(8): 17-33.
[2] 林方成, 程鹏明, 张鹏, 刘刚, 孙军. Al-Zn-Mg系铝合金的微合金化研究进展[J]. 材料工程, 2022, 50(8): 34-44.
[3] 夏先朝, 冯学磊, 孙京丽, 聂敬敬, 庞松, 袁勇, 董泽华. 镁合金超疏水环氧复合涂层的制备与性能[J]. 材料工程, 2022, 50(8): 124-132.
[4] 杨湘杰, 郑彬, 付亮华, 杨颜. 稀土Y和Sm对AZ91D镁合金组织与性能的影响[J]. 材料工程, 2022, 50(7): 139-148.
[5] 宋刚, 李传瑜, 郎强, 刘黎明. 电弧电流对AZ31B/DP980激光诱导电弧焊接接头成形及力学性能的影响[J]. 材料工程, 2022, 50(6): 131-137.
[6] 张昊, 吴昊, 唐啸天, 罗涛, 邓人钦. 微量W元素的添加对CoCrFeNiMnAl高熵合金的组织与性能的影响[J]. 材料工程, 2022, 50(3): 50-59.
[7] 李红, 闫维嘉, 张禹, 杜文博, 栗卓新, MARIUSZBober, SENKARAJacek. 先进航空材料焊接过程热裂纹研究进展[J]. 材料工程, 2022, 50(2): 50-61.
[8] 孙疆, 石章智, 李亚庚, 李相民, 李危石, 王鲁宁. 面向骨科植入应用的可降解锌基材料研究进展[J]. 材料工程, 2022, 50(11): 14-25.
[9] 陈维平, 陈焕达, 褚晨亮, 付志强. 粉末冶金(FeNiMnAlx)50Cu50中熵合金的微观组织与力学性能[J]. 材料工程, 2022, 50(10): 55-62.
[10] 金启豪, 陈娟, 彭立明, 李子言, 阎熙, 李春曦, 侯城成, 袁铭扬. 碳纤维增强树脂基复合材料与铝/镁合金连接研究进展[J]. 材料工程, 2022, 50(1): 15-24.
[11] 谢小青, 李轩, 吕威, 来升, 刘益, 李建军, 谢文玲. Co对Ti45Al-8Nb-0.3Y合金组织结构和高温抗氧化性能的影响[J]. 材料工程, 2022, 50(1): 101-108.
[12] 田亚强, 赵冠璋, 刘芸, 张源, 郑小平, 陈连生. 生物可降解医用镁合金体内外降解行为研究进展[J]. 材料工程, 2021, 49(5): 24-37.
[13] 冯靖凯, 张丁非, 陈霞, 赵阳, 蒋斌, 潘复生. 一种细化AZ31镁合金的固液两相区复合挤压工艺[J]. 材料工程, 2021, 49(4): 78-88.
[14] 范泽文, 赵新宇, 邱帅, 王艳, 郭静, 权慧欣, 徐兰娟. 聚乳酸/聚乙二醇/羟基磷灰石多孔骨支架的3D打印制备及其生物相容性[J]. 材料工程, 2021, 49(4): 135-141.
[15] 张连腾, 陈乐平, 徐勇, 袁源平. Mg-9Al-3Si-0.375Sr-0.78Y合金的热变形行为及本构模型[J]. 材料工程, 2021, 49(2): 88-96.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn