Effect of pulse duty cycle on microstructure and properties of graphene composite coating under supercritical carbon dioxide
XUE Zi-ming1, LEI Wei-ning1,2, WANG Yun-qiang1, QIAN Hai-feng1, LI Qi-lin1,2
1. School of Mechanical Engineering, Jiangsu University of Technology, Changzhou 213000, Jiangsu, China;
2. Jiangsu Key Laboratory of Advanced Material Design and Additive Manufacturing, Changzhou 213000, Jiangsu, China
Abstract:The supercritical nickel-graphene composite coating was prepared by supercritical carbon dioxide fluid(SCF-CO2) assisted pulsed composite electrodeposition technique with graphene oxide (GO) as the second phase additive. The effect of pulse duty cycle on the microstructure and mecha-nical properties of the coatings was investigated. The results show that the microstructure of composite coating can be refined significantly by the combination of supercritical carbon dioxide fluid and graphene oxide. The change of the (111) and (200) peaks in the XRD patterns of the composite coating shows that change occurs in preferred orientation during the crystallization process. The change of duty cycle has great influence on the mechanical properties of the coatings. The micro-hardness of the supercritical nickel-graphene composite coating is as high as 756.8HV0.2 and the cross-sectional area of wear scar is 4385μm2 at 50% duty cycle. Compared with the nickel-graphene comp-osite coating prepared under conventional conditions, the microhardness and wear resistance of super-critical nickel-graphene composite coating are increased by 1.6 and 11 times.
薛子明, 雷卫宁, 王云强, 钱海峰, 李奇林. 超临界条件下脉冲占空比对石墨烯复合镀层微观结构和性能的影响[J]. 材料工程, 2019, 47(5): 53-62.
XUE Zi-ming, LEI Wei-ning, WANG Yun-qiang, QIAN Hai-feng, LI Qi-lin. Effect of pulse duty cycle on microstructure and properties of graphene composite coating under supercritical carbon dioxide. Journal of Materials Engineering, 2019, 47(5): 53-62.
[1] QIAN H F, LEI W N, WANG C Y, et al. Microstructure and microhardness studies of nickel-based diamond composite coatings by electrodepositing in supercritical CO2[J]. Material Research Innovations, 2015, 19(Suppl 10):1-4.
[2] 吴化,陈涛,王庆辉. 电沉积Ni-SiC纳米复合镀层的显微组织分析[J]. 材料工程, 2011(12):48-52. WU H, CHEN T, WANG Q H. Microstructure analysis of Ni-SiC nanocomposite coating by electrodeposition[J]. Journal of Materials Engineering, 2011(12):48-52.
[3] LOW C T J, WILLS R G A, WALSH F C. Electrodeposition of composite coatings containing nanoparticles in a metal deposit[J]. Surface & Coatings Technology, 2006, 201(1/2):371-383.
[4] AAL A A. Hard and corrosion resistant nanocomposite coating for Al alloy[J]. Materials Science & Engineering:A, 2008, 474(1/2):181-187.
[5] ZHU Y, MURALI S, CAI W, et al. Graphene and graphene oxide:synthesis, properties, and applications[J]. Advanced Ma-terials, 2010, 22(35):3906-3924.
[6] SHAO Y, WANG J, WU H, et al. Graphene based electro-chemical sensors and biosensors:a review[J]. Electroanalysis, 2010, 22(10):1027-1036.
[7] JAGANNADHAM K. Electrical conductivity of copper-graphene composite films synthesized by electrochemical deposition with exfoliated graphene platelets[J]. Metallurgical and Materials Transactions B, 2012, 43(2):6887-6890.
[8] JO I, HSU I K, LEE Y J, et al. Low-frequency acoustic phonon temperature distribution in electrically biased graphene[J]. Nano Letters, 2011, 11(1):85-90.
[9] FRANK I W, TANENBAUM D M, VAN D Z A M, et al. Mechanical properties of suspended graphene sheets[J]. Journal of Vacuum Science & Technology B Microelectronics & Nano-meter Structures, 2007, 25(6):2558-2561.
[10] POETSCHKE M, ROCHA C G, FOA TORRES L E F, et al. Modeling graphene-based nanoelectromechanical devices[J]. Physical Review B, 2010, 81(19):2498-2502.
[11] 吉传波,王晓峰,邹金文,等. 石墨烯增强镍基粉末高温合金复合材料的力学性能[J]. 材料工程, 2017, 45(3):1-6. JI C B, WANG X F, ZOU J W, et al. Mechanical properties of graphene reinforced nickel-based P/M superalloy[J]. Journal of Materials Engineering, 2017, 45(3):1-6.
[12] LI M, CHE H, LIU X, et al. Highly enhanced mechanical pro-perties in Cu matrix composites reinforced with graphene dec-orated metallic nanoparticles[J]. Journal of Materials Science, 2014, 49(10):3725-3731.
[13] VAROL T, CANAKCI A. Microstructure, electrical conduct-ivity and hardness of multilayer graphene/copper nanocomposites synthesized by flake powder metallurgy[J]. Metals and Mat-erials International, 2015, 21(4):704-712.
[14] 洪起虎,燕绍九,杨程,等. 氧化石墨烯/铜基复合材料的微观结构及力学性能[J]. 材料工程, 2016, 44(9):1-7. HONG Q H, YAN S J, YANG C, et al. Microstructure and mechanical properties of graphene oxide/copper composites[J]. Journal of Materials Engineering, 2016, 44(9):1-7.
[15] 张林,陈多礼,朱旻昊,等. 氧化石墨烯对阻尼丁腈橡胶抗老化性能的影响[J]. 材料工程, 2017, 45(3):7-12. ZHANG L, CHEN D L, ZHU M H, et al. Effect of graphene oxide on anti-aging property of nitrile butadiene rubber[J]. Jou-rnal of Materials Engineering,2017,45(3):7-12.
[16] 沈宇,雷卫宁,王云强,等. 电流密度对超临界石墨烯电铸层微观结构与性能的影响[J]. 中国表面工程, 2016, 29(4):23-29. SHEN Y, LEI W N, WANG Y Q, et al. Effects of current den-sity on microstructure and properties of graphene composite ele-ctroforming layer under supercritical fluids[J]. China Surface Engineering, 2016, 29(4):23-29.
[17] CHUNG S T, TSAI W T. Nanocrystalline Ni-C electro-deposits prepared in electrolytes containing supercritical carbon dioxide[J]. Journal of the Electrochemical Society, 2009, 156(11):457-461.
[18] WANG H Y, CHUNG S T, CHUANG Y C, et al. Electroless Ni-B deposition from an emulsified supercritical carbon dioxide bath[J]. Thin Solid Films, 2010, 518(24):7505-7508.
[19] CHUNG S T, CHUANG Y C, CHIU S Y, et al. Effect of H3PO3, concentration on the electrodeposition of nanocrystalline Ni-P deposited in an emulsified supercritical CO2, bath[J]. Electrochimica Acta, 2011, 58(1):571-577.
[20] CHIU S Y, CHUNG S T, LIN C Y, et al. Electrodeposition of Ni-Al2O3, composite coatings employing supercritical CO2, baths[J]. Surface & Coatings Technology, 2014, 247(5):68-73.
[21] CHANG T F M, SONE M, SHIBATA A, et al. Bright nickel film deposited by supercritical carbon dioxide emulsion using ad-ditive-free watts bath[J]. Electrochimica Acta, 2010, 55(22):6469-6475.
[22] AND E D N, BRIGHT F V. The pH within PFPE reverse mi-celles formed in supercritical CO2[J]. Journal of Physical Chem-istry B, 1998, 102(8):1474-1478.
[23] ZHU Z W, ZHU D, QU N S, et al. Pulse electroforming of nickel under perturbation of hard particles[J]. Transactions of Nonferrous Metals Society of China, 2005(Suppl 3):251-254.
[24] SZEPTYCKA B, GAJEWSKA-MIDZIALEK A, BABUL T. Electrodeposition and corrosion resistance of Ni-graphene compo-site coatings[J]. Journal of Materials Engineering and Performance, 2016, 25(8):3134-3138.
[25] SEKAR R. Effect of saccharin and thiourea on electrodeposition of cobalt and characteristics of deposits[J]. Transactions of the Institute of Metal Finishing, 2015, 93(1):44-52.
[26] MAHARANA H S, RAI P K, BASU A. Surface-mechanical and electrical properties of pulse electrodeposited Cu-graphene oxide composite coating for electrical contacts[J]. Journal of Materials Science, 2017, 52(2):1089-1105.
[27] 徐滨士,王海斗,董世运,等. 纳米Al2O3/Ni复合电刷镀层的表征与微动磨损机理[J]. 稀有金属材料与工程, 2004, 33(8):785-788. XU B S, WANG H D, DONG S Y, et al. Characterization and strengthening mechanisms of nano-Al2O3/Ni composite layer[J]. Rare Metal Materials & Engineering, 2004, 33(8):785-788.
[28] WANG L, GAO Y, XUE Q, et al. Microstructure and tribolo-gical properties of electrodeposited Ni-Co alloy deposits[J]. Applied Surface Science, 2004, 242(3):326-332.