Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (5): 133-138    DOI: 10.11868/j.issn.1001-4381.2017.000629
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
Co元素掺杂对CeO2基固态电解质导电行为的影响
吴闪, 朱延俊, 赵梦媛, 解昊, 杨星, 边凌锋, 孟彬
昆明理工大学 材料科学与工程学院, 昆明 650093
Effects of Co-dopings on Electrical Behaviors of CeO2-based Solid Electrolyte
WU Shan, ZHU Yan-jun, ZHAO Meng-yuan, XIE Hao, YANG Xing, BIAN Ling-feng, MENG Bin
Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
全文: PDF(2859 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 分别采用晶格固溶(Solid Solution,SS)和晶界择优偏聚(Grain Boundary Segregation,GBS)两种方式将Co元素添加至Gd掺杂的CeO2粉末(GDC)内,研究两种添加方式对GDC电导行为的影响。首先采用共沉淀法制备10%Gd(摩尔分数,下同)掺杂的GDC粉末(10GDC),再分别通过以上两种方式将1%Co元素添加至10GDC粉末中,得到10GDC-1Co(SS) 和10GDC-1Co(GBS)粉末样品。上述粉末样品中只含有CeO2固溶体相,晶粒尺寸范围为10.1~12nm。将Co掺杂前后粉末样品在1000℃下烧结1h,分别得到10GDC,10GDC-1Co(SS)和10GDC-1Co(GBS)片状陶瓷样品。烧结后所有陶瓷样品中均只含有CeO2固溶体相,晶粒尺寸范围为44.5~59.7nm。10GDC-1Co(SS)和10GDC-1Co(GBS)样品的电导率均高于10GDC样品的电导率,当测试温度低于430℃时,10GDC-1Co(GBS)样品的电导率高于10GDC-1Co(SS)样品;当测试温度高于430℃时,10GDC-1Co(SS)样品的电导率高于10GDC-1Co(GBS)样品。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴闪
朱延俊
赵梦媛
解昊
杨星
边凌锋
孟彬
关键词 CeO2基固态电解质晶格固溶晶界择优偏聚电导率    
Abstract:Co element was added into Gd-doped ceria (GDC) powders by two methods namely lattice solution and preferred grain boundary segregation, respectively. The 10% (mole fraction, the same below) Gd-doped ceria (10GDC) solid solution powders were co-precipitated and then doped with 1%Co by the means of the two ways. These powders were named as 10GDC-1Co (SS) and 10GDC-1Co (GBS), respectively. Then the powders above were sintered at 1000℃ for 1h to obtain 10GDC, 10GDC-1Co (SS) and 10GDC-1Co (GBS) ceramic samples. All the synthesized powders and sintered samples only consist of the CeO2 solid solution phase, and their grain sizes are 10.1-12nm and 59.8-112nm, respectively. The conductivities of 10GDC-1Co (SS) and 10GDC-1Co (GBS) samples are higher than that of 10GDC samples. When the test temperature is lower than 430℃, the conductivities of 10GDC-1Co (GBS) samples are higher than that of 10GDC-1Co (SS) samples, but as the test temperature increases, the conductivities of 10GDC-1Co (GBS) samples are lower than that of 10GDC-1Co (SS) samples.
Key wordsCeO2-based solid electrolyte    solid solution    grain boundary segregation    electrical conductivity
收稿日期: 2017-05-17      出版日期: 2018-05-16
中图分类号:  TB34  
通讯作者: 孟彬(1979-),男,教授,博士,研究方向为功能陶瓷(固态离子导体),联系地址:云南省昆明市五华区学府路昆明理工大学(650093),E-mail:hitmengbin@163.com     E-mail: hitmengbin@163.com
引用本文:   
吴闪, 朱延俊, 赵梦媛, 解昊, 杨星, 边凌锋, 孟彬. Co元素掺杂对CeO2基固态电解质导电行为的影响[J]. 材料工程, 2018, 46(5): 133-138.
WU Shan, ZHU Yan-jun, ZHAO Meng-yuan, XIE Hao, YANG Xing, BIAN Ling-feng, MENG Bin. Effects of Co-dopings on Electrical Behaviors of CeO2-based Solid Electrolyte. Journal of Materials Engineering, 2018, 46(5): 133-138.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.000629      或      http://jme.biam.ac.cn/CN/Y2018/V46/I5/133
[1] 朱承飞,洪永飞,薛金花,等.甘氨酸-硝酸盐燃烧法制备Beta-Al2O3固体电解质研究[J].材料工程,2016,44(8):23-28.ZHU C F,HONG Y F,XUE J H,et al.Synthesis of Beta-Al2O3solid electrolytes by glycine-nitrate combustion[J].Journal of Materials Engineering,2016,44(8):23-28.
[2] CHOCKALINGAM R,CHOCKALINGAM S,AMARAKOON V R W.The electrical properties of microwave sintered gadolinia doped ceria-alumina nano-composite electrolyte[J].Journal of Power Sources,2011,196(4):1808-1817.
[3] YAHIRO H,EGUCHI K,ARAI H.Electrical properties and reducibilities of ceria-rare earth oxide systems and their application to solid oxide fuel Cell[J].Solid State Ionics,1989,36(1/2):71-75.
[4] ESPOSITO V,TRAVERSA E.Design of electroceramics for solid oxides fuel cell applications:playing with ceria[J].Journal of American Ceramic,2008,91(4):1037-1051.
[5] 邸婧.中低温固体氧化物燃料电池新型CeO2基电解质的研究[D].天津:天津大学,2009.DI J.Novel CeO2 based electrolyte for low and intermediate temperature solid oxide fuel cells[D].Tianjin:Tianjin University,2009.
[6] SELLADURAI S,MUTHUKKUMARAN K,KUPPUSAMI P,et al.Microstructural study of thin films of 5 mol% gadolinia doped ceria prepared by pulsed laser ablation[J].Ionics,2007,13(2):87-92.
[7] KUMAR B,CHEN C,VARANASI C,et al.Electrical properties of heterogeneously doped yttria stabilized zirconia[J].Power Sources,2005,140(1):12-20.
[8] GUO X,WASER R.Electrial properties of the grain boundaries of oxygen ion conductors:acceptor-doped zirconia and ceria[J].Progress in Materials Science,2006,51(2):151-210.
[9] AVILA-PAREDES H J,KIM S.The effect of segregated transition metal ions on the grain boundary resistivity of gadolinium doped ceria:alteration of the space charge potential[J].Solid State Ionics,2006,177(35):3075-3080.
[10] GREGORI G,RAHMATI B,SIGLE W,et al.Electric conduction properties of boron-doped ceria[J].Solid State Ionics,2011,192(1):65-69.
[11] LUPETIN P,GIANNICI F,GREGORI G,et al.Effects of grain boundary decoration on the electrical conduction of nanocrystalline CeO2[J].Journal of the Electrochemical Society,2012,159(4):417-425.
[12] 周明,葛林,李瑞峰,等.Co掺杂对(CeO2)0.92(Y2O3)0.06(La2O3)0.02电解质材料性能的影响[J].南京大学学报(自然科学),2012,33(3):273-277.ZHOU M,GE L,LI R F,et al.Effects of Co doping on (CeO2)0.92(Y2O3)0.06(Sm2O3)0.02 solid electrolyte materials[J].Journal of Nanjing University (Natural Science),2012,33(3):273-277.
[13] MENG B,LIN Z L,ZHU Y J,et al.Effects of Fe-dopings through solid solution and grain-boundary segregation on the electrical properties of CeO2-based solid electrolyte[J].Ionics,2015,21(9):2575-2581.
[14] BARAL A K,DASARIH P,KIM B K,et al.Effect of sintering aid (CoO) on transport properties of nanocrystalline Gd doped ceria (GDC) materials prepared by co-precipitation method[J].Journal of Alloys and Compounds,2013,575(25):455-460.
[1] 刘媛媛, 李舒婷, 彭军, 安胜利. Gd2O3掺杂量对Ce1-xGdxO2-δ电解质导电性能的影响[J]. 材料工程, 2020, 48(6): 118-124.
[2] 赵辉, 赵菲, 杨长龙, 韩钰, 靳东, 李红英. 时效处理对Al-Zr-Sc(-Er)合金组织和性能的影响[J]. 材料工程, 2020, 48(5): 112-119.
[3] 王伟国, 王新福, 汪聃, 郝刚领. 锶镁共掺对Na0.5Bi0.5TiO3氧离子导体电学性能的影响分析[J]. 材料工程, 2019, 47(8): 28-32.
[4] 王松林, 徐向棋, 王东生. 微管SOFC复合支撑体NiO/La0.7Ca0.3CrO3-δ的相转化纺丝法制备与性能[J]. 材料工程, 2019, 47(2): 42-48.
[5] 何卫, 王利民, 蔡炜, 汤超, 姚辉. 氮掺杂碳纳米管/铝基复合材料的制备及性能[J]. 材料工程, 2016, 44(2): 49-55.
[6] 张志华, 潘复生, 陈先华, 刘娟. 镁及其合金的电磁屏蔽性能研究[J]. 材料工程, 2013, 0(1): 52-57.
[7] 王攀, 郑玉婴, 李宝铭, 张通. PVPy/MWNTs纳米复合材料的制备及其导电性能研究[J]. 材料工程, 2012, 0(7): 71-75.
[8] 郑育英, 廖世军, 黄慧民, 王俏运. NiO-YSZ纳米复合粉体的制备及其表征[J]. 材料工程, 2011, 0(8): 68-71.
[9] 陈进, 张海燕, 刘晓平, 李丽萍. 碳包铜纳米颗粒的制备及其性能研究[J]. 材料工程, 2011, 0(7): 31-33,89.
[10] 张小帆, 邢丽, 杨成刚, 柯黎明. 未焊透缺陷深度对LY12铝合金搅拌摩擦焊焊缝电导率的影响[J]. 材料工程, 2010, 0(2): 13-16.
[11] 郑文景, 周万城, 罗发, 于新民. SiC纤维表面C涂层的制备及介电性能研究[J]. 材料工程, 2009, 0(11): 36-39.
[12] 帅歌旺, 方平, 郭正华, 卢百平. 机械合金化制备Cu-Fe过饱和固溶体及其时效分解[J]. 材料工程, 2008, 0(12): 51-54.
[13] 戴剑锋, 高建龙, 乔宪武, 王青, 李维学, 杜晓芳. CNTs定向排列的CNTs/PMMA电导率低突增效应研究[J]. 材料工程, 2008, 0(10): 1-4,9.
[14] 颜海燕, 胡志毅, 寇开昌, 郑建龙, 张教强. 功能磺酸掺杂聚苯胺的电导率及其光谱特征研究[J]. 材料工程, 2005, 0(1): 50-52,57.
[15] 杨威, 隋智通. Cr2O3对掺锶亚锰酸镧非化学整比、晶体结构、电导率和热膨胀性能影响[J]. 材料工程, 1997, 0(11): 16-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn