Flame retardant performance of nano-Sb2O3/BEO/PP composites
Jian-lin XU1,2,*(), Xiao-qi LIU1,2, Wen-long YANG1,2, Lei NIU1,2, Jin-qiang ZHAO1,2
1 State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China 2 Baiyin Research Institute of Novel Materials, Lanzhou University of Technology, Baiyin 730900, Gansu, China
To improve flame retardant properties of polypropylene, the brominated epoxy resin (BEO) and nano-Sb2O3 were added into polypropylene by using a high energy ball milling technique. Flame retardant properties of polypropylene composites were evaluated by UL94 vertical combustion tests and limit oxygen index (LOI). The surface morphology of combustion products of composites was characterized by scanning electron microscopy(SEM) and the flame-retardant mechanism of flame retardant additives acting on the polymer matrix was studied by using thermo gravimetric analysis(TGA) and Fourier transform infrared (FT-IR) spectroscopy. The results show that the reaction between modified nano-Sb2O3 and BEO can prolong residence of the halogens in the combustion area, resulting in more hydroxyl and hydrogen radicals are replaced by the bromine radicals. When the content of modified nano-Sb2O3 is 7% (mass fraction, the same below) and that of BEO is 21%, the nano-Sb2O3/BEO/PP composite has excellent flame retardant performance with 28.6% of LOI value and V-0 of UL94 grade of vertical combustion.
CHEN G G , GUAN Y , QI X M , et al. Recent progress on flame retardance of polymer/layered silicate nanocomposites[J]. Journal of Materials Engineering, 2015, 43 (8): 104- 112.
2
LI N , XIA Y , MAO Z W , et al. Influence of antimony oxide on flammability of polypropylene/intumescent flame retardant system[J]. Polymer Degradation and Stability, 2012, 97 (9): 1737- 1744.
doi: 10.1016/j.polymdegradstab.2012.06.011
3
MIRDAMADIAN Z , GHANBARI D . Synergistic effect between Sb2O3 nanoparticles-trichloromelamine and carbon nanotube on the flame retardancy and thermal stability of the cellulose acetate[J]. Journal of Cluster Science, 2014, 25 (4): 925- 936.
doi: 10.1007/s10876-013-0673-1
FAN W X , LI W Y , REN J Q , et al. Research progress of acylhydrazone compounds[J]. Tianjin Chemical Industry, 2010, 24 (5): 17- 19.
doi: 10.3969/j.issn.1008-1267.2010.05.006
5
LU H D , WILKIE C A . Synergistic effect of carbon nanotubes and decabromodiphenyl oxide/Sb2O3 in improving the flame retardancy of polystyrene[J]. Polymer Degradation and Stability, 2010, 95 (4): 564- 571.
doi: 10.1016/j.polymdegradstab.2009.12.011
6
MELAMED L , EDEN E , LEIFER M , et al. Performances of blends between poly (pentabromobenzyl acrylate) and magnesium hydroxide as flame retardants for polypropylene block copolymers[J]. Fire Technology, 2015, 51 (1): 41- 52.
doi: 10.1007/s10694-014-0404-7
XI X , ZHANG Q C , ZHAO H , et al. Effect of halogen-antimony flame retardant system on thermoplastic polyester elastomer[J]. Engineering Plastics Application, 2013, 41 (5): 82- 89.
doi: 10.3969/j.issn.1001-3539.2013.05.019
8
CHEN S J , WANG C L , LI J . Effect of alkyl groups in organic part of polyoxo-metalates based ionic liquids on properties of flame retardant polypropylene[J]. Thermochimica Acta, 2016, 631, 51- 58.
doi: 10.1016/j.tca.2016.03.020
9
DUAN L J , YANG H Y , SONG L . Hyperbranched phosphorus/nitrogen-containing polymer incombination with ammonium polyphosphate as a novel flameretardant system for polypropylene[J]. Polymer Degradation and Stability, 2016, 134, 179- 185.
doi: 10.1016/j.polymdegradstab.2016.10.004
10
SHI Y Q , GUI Z , XU B . Graphite-like carbon nitride and functionalized layered double hydroxide filled polypropylene-grafted maleic an hydride nanocomposites:comparison in flame retardancy, and thermal, mechanical and UV-shielding properties[J]. Composites Part B, 2015, 79, 277- 284.
doi: 10.1016/j.compositesb.2015.04.046
11
GALLO E , SCHARTEL B , ACIERNO D , et al. Flame retardant biocomposites:synergism between phosphinate and nanometric metal oxides[J]. European Polymer Journal, 2011, 47 (7): 1390- 1401.
doi: 10.1016/j.eurpolymj.2011.04.001
XU J L , ZHOU S G , NIU L , et al. Preparation and flame retardancy of Sb2O3/polyvinyl chloride composites[J]. Transactions of Materials and Heat Treatment, 2015, 36 (11): 1- 6.
ZHANG R L . Research in flame-retardance, heat resistance and mechanical properties of nano-Sb2O3/epoxy composites[J]. Thermosetting Resin, 2011, 26 (4): 46- 49.
ZHANG X Y , SHEN H F , HUANG H , et al. Novel progress of application and surface-modification technique for nano-particles materials[J]. Journal of Materials Engineering, 2005, (10): 58- 63.
doi: 10.3969/j.issn.1001-4381.2005.10.015
TANG X S , MENG Y , LIU J . Review on the application and prospect of bromated epoxy resin flame retardant[J]. China Plastics Industry, 2011, 39 (Suppl 1): 47- 49.
LIU G , ZHANG D J , ZHANG H . Mechanical properties of nanoparticles modified epoxy matrix and composites[J]. Journal of Materials Engineering, 2010, (1): 47- 53.
doi: 10.3969/j.issn.1001-4381.2010.01.011
17
高田田.高效聚丙烯阻燃剂的研究和开发[D].广州: 华东理工大学, 2014.
17
GAO T T. Research and development of efficient flame retardant polypropylene[D]. Guangzhou: East China University of Science and Technology, 2014.
GAN X R , XUE F H , HUANG H , et al. Preparation and characterization of SiC/C nano-composites[J]. Journal of Materials Engineering, 2014, (2): 75- 82.
doi: 10.3969/j.issn.1001-4381.2014.02.015
19
GHOLAMIAN F , NABIYOUNI G , GHANBARI D . Synergistic effect between Sb2O3 nanostructure and brominated compound on the flame retardant properties of the polymeric matrixes[J]. High Temperature Materials and Processes, 2013, 32 (2): 125- 132.