Please wait a minute...
材料工程  2019, Vol. 47 Issue (2): 42-48    DOI: 10.11868/j.issn.1001-4381.2018.000216
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
王松林, 徐向棋, 王东生
铜陵学院 机械工程学院, 安徽 铜陵 244061
Preparation and characterization of composite support NiO/La0.7Ca0.3CrO3-δ by phase-conversion spinning method for micro-tubular SOFC
WANG Song-lin, XU Xiang-qi, WANG Dong-sheng
Department of Mechanical Engineering, Tongling University, Tongling 244061, Anhui, China
全文: PDF(2535 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用固相反应法合成La0.7Ca0.3CrO3-δ(LCC)粉体,用相转化纺丝法制备NiO/LCC(1:1)中空纤维膜,1400℃空气中烧结作为微管固体氧化物燃料电池的复合支撑体。借助粒度分析仪、热分析仪、X射线衍射仪、扫描电镜、四端子测量仪、热膨胀仪、万能材料试验机等对复合支撑体的粉体粒度、烧结性能、致密度、断面微结构、电导性能、热膨胀性能和抗弯强度进行分析。结果表明:LCC与NiO粉体在1400℃的电池共烧温度下化学性质稳定,烧结性能良好。微管断面总体呈现表面皮层和内部双层径向平行排列且均匀分布的手指状孔隙结构,孔隙率达到60.6%,还原后的孔隙率增加到68.1%。纯H2中的电导率随温度升高而降低,700℃时达到10.8S·cm-1。还原前后的抗弯强度分别为39.6MPa和33.2MPa,热膨胀系数TEC为12.4×10-6K-1,与其他电池材料相匹配。
E-mail Alert
关键词 微管固体氧化物燃料电池(微管SOFC)中空纤维膜烧结性能电导率    
Abstract:Using solid-phase reaction process to synthesize La0.7Ca0.3CrO3-δ(LCC) primary powder, composite hollow fiber membrane of NiO/LCC (1:1) was prepared by phase-conversion spinning method and then sintered at 1400℃ in air as micro-tubular solid oxide fuel cells (SOFC) support. The particle size distribution, TG-DTA thermal analysis, structure, morphologies, electrical conductivity, thermal expansion and bending strength were characterized by laser particulate size analyzer, thermal analyzer, X-ray diffraction, scanning electron microscopy, standard DC four-probe technique, thermal expansion dilatometer and universal material testing machine. Results indicate that LCC and NiO powders have considerable chemical and sintering compatibilities at SOFC co-firing temperature (1400℃). The fracture section of the hollow fiber membrane exhibits a sandwich-like structure with homogeneous porous surfaces. Two layers of obviously bigger parallel finger-like pores distribute uniformly between the inner and outer surfaces of the microtubule section. The porosity of the sample is 60.6%, and increases to a relatively high value of 68.1% after reduction. Electrical conductivity of the sintered specimen decreases as the temperature increasing in pure H2. The value reaches 10.8S·cm-1 at 700℃. Bending strength before and after reduction are 39.6MPa and 33.2MPa respectively. Thermal expansion coefficient (TEC) value of the NiO/LCC hollow fiber membrane gets to 12.4×10-6K-1, which is very close to that of other SOFC components, such as NiO/YSZ anode and LCC interconnect.
Key wordsmicro-tubular SOFC    hollow fiber membrane    sintering ability    electrical conductivity
收稿日期: 2018-03-05      出版日期: 2019-02-21
中图分类号:  TM911  
通讯作者: 王松林(1973-),男,教授,博士后,主要从事固体氧化物燃料电池关键材料研究,联系地址:安徽省铜陵市翠湖四路1335号铜陵学院机械工程学院(244061),     E-mail:
王松林, 徐向棋, 王东生. 微管SOFC复合支撑体NiO/La0.7Ca0.3CrO3-δ的相转化纺丝法制备与性能[J]. 材料工程, 2019, 47(2): 42-48.
WANG Song-lin, XU Xiang-qi, WANG Dong-sheng. Preparation and characterization of composite support NiO/La0.7Ca0.3CrO3-δ by phase-conversion spinning method for micro-tubular SOFC. Journal of Materials Engineering, 2019, 47(2): 42-48.
链接本文:      或
[1] WHISTON M M,BILEC M M,SCHAEFER L A. Influence of the charge double layer on solid oxide fuel cell stack behavior[J]. Journal of Power Sources,2015,293:767-777.
[2] FRANCIS J S C,COLOGNA M,MONTINARO D,et al. Flash sintering of anode-electrolyte multilayers for SOFC applications[J]. Journal of the American Ceramic Society,2013,96(5):1352-1354.
[3] XU M,LI T S,YANG M,et al. Modelling of an anode supported solid oxide fuel cell focusing on thermal stresses[J]. International Journal of Hydrogen Energy,2016,41(33):14927-14940.
[4] SINGHAL S C,KENDALL K. 高温固体氧化物燃料电池-原理、设计和应用[M]. 韩敏芳,蒋先锋译.北京:科学出版社, 2007:169-197. SINGHAL S C,KENDALL K. High temperature solid oxide fuel cells:fundamentals, design and applications[M]. Translated by HAN M F and JIANG X F.Beijing:Science Press,2007:169-197.
[5] FERGUS J W. Lanthanum chromite-based materials for solid oxide fuel cell interconnects[J]. Solid State Ionics,2004, 171(1):1-15.
[6] FU Y P,WANG H C,OUYANG J. Electrical conduction behaviors and mechanical properties of Cu doping on B-site of (La0.8-Ca0.2)(Cr0.9Co0.1)O3-δ interconnect materials for SOFCs[J]. International Journal of Hydrogen Energy,2011,36(20):13073-13082.
[7] LIU M F,ZHAO L,DONG D H,et al. High sintering ability and electrical conductivity of Zn doped La(Ca)CrO3 based interconnect ceramics for SOFCs[J]. Journal of Power Sources,2008,177:451-456.
[8] ZHOU X L,MA J J,DENG F J,et al. A high performance interconnecting ceramics for solid oxide fuel cells (SOFCs)[J]. Solid State Ionics,2007,177(39/40):3461-3466.
[9] CHEN Y H,LU X Y,DING Y Z,et al. Microwave assisted synthesis, sinterability and properties of Ca-Zn co-doped LaCrO3 as interconnect material for IT-SOFCs[J]. Journal of Rare Earths,2010,28(1):153-157.
[10] 袁佟,邓畅光,毛杰,等. 等离子喷涂-物理气相沉积制备7YSZ热障涂层及其热导率研究[J]. 材料工程,2017,45(7):1-6. YUAN T,DENG C G,MAO J,et al. Preparation and thermal conductivity of 7YSZ thermal barrier coatings prepared by plasma spray-physical vapor deposition[J]. Journal of Materials Engineering,2017,45(7):1-6.
[11] 王松林,凤仪,王东生,等. 复合阳极共烧制备致密La0.7Ca0.3-Cr0.97O3-δ连接体薄膜的研究[J].无机化学学报,2012,28(4):779-784. WANG S L,FENG Y,WANG D S,et al. Fabrication of dense La0.7Ca0.3Cr0.97O3-δ interconnect thin membrane on composite anode support by co-firing[J]. Chinese Journal of Inorganic Chemistry,2012,28(4):779-784.
[12] 王松林,凤仪,王东生,等. 三层共烧制备LaCrO3基连接体/复合阳极/YSZ电解质的研究[J]. 金属学报,2012,48(5):587-592. WANG S L,FENG Y,WANG D S,et al. Three-layer co-firing fabrication of LaCrO3-based ceramic interconnect,composite anode support and YSZ electrolyte[J]. Acta Metallurgica Sinica,2012,48(5):587-592.
[13] KENDALL K,LIANG B,KENDALL M,et al. Microtubular SOFC (mSOFC) system in mobile robot applications[J]. ECS Transactions,2017,78(1):237-242.
[14] 孟秀霞,杨乃涛,尹屹梅,等. 微管式固体氧化物燃料电池制备技术及电堆组装工艺[J]. 化工学报,2011,62(11):2977-2986. MENG X X,YANG N T,YIN Y M, et al. Fabrication techniques and stack assembling methods for micro tubular solid oxide fuel cells[J]. CIESC Journal,2011,62(11):2977-2986.
[15] 王松林,王东生,孟广耀,等. 新型复合支撑体共烧制备致密La0.7Ca0.3Cr0.97O3-δ连接体薄膜[J]. 无机材料学报,2012,27(9):911-916. WANG S L,WANG D S,MENG G Y,et al. Fabrication of dense La0.7Ca0.3Cr0.97O3-δ interconnect membrane on novel SOFC composite support by co-firing[J]. Journal of Inorganic Materials,2012,27(9):911-916.
[16] 杨鹏. 管式固体氧化物燃料电池制备及电化学性能研究[D]. 北京:北京理工大学,2015. YANG P.Preparation and electrochemical characterization of the tubular SOFC[D].Beijing:Beijing Institute of Technology,2015.
[17] 杨乃涛,申义驰,延威,等. 微管式固体氧化物燃料电池阳极微结构及其性能[J]. 无机材料学报,2014,29(12):1246-1252. YANG N T,SHEN Y C,YAN W,et al. Microstructure and performance of anode for microtubular solid oxide fuel cells[J]. Journal of Inorganic Materials,2014,29(12):1246-1252.
[18] CHICK L A,LIU J,STEVENSON J W,et al. Phase transitions and transient liquid-phase sintering in calcium-substituted lanthanum chromite[J]. Journal of the American Ceramic Society,1997,80(8):2109-2120.
[19] 黄加乐. 相转化聚醚砜超滤膜的孔结构形成机理研究[D].福州:福州大学,2003. HUANG J L. Study on formation mechanism of pore structure in polyethersulfone ultrafiltration membranes prepared by phase inversion[D]. Fuzhou:Fuzhou University,2003.
[20] ZHANG X Z,HU J P,CHANG Q B,et al. Influences of internal coagulant composition on microstructure and properties of porous YSZ hollow fibre membranes for water treatment[J]. Separation and Purification Technology,2015,147:337-345.
[1] 刘媛媛, 李舒婷, 彭军, 安胜利. Gd2O3掺杂量对Ce1-xGdxO2-δ电解质导电性能的影响[J]. 材料工程, 2020, 48(6): 118-124.
[2] 赵辉, 赵菲, 杨长龙, 韩钰, 靳东, 李红英. 时效处理对Al-Zr-Sc(-Er)合金组织和性能的影响[J]. 材料工程, 2020, 48(5): 112-119.
[3] 王伟国, 王新福, 汪聃, 郝刚领. 锶镁共掺对Na0.5Bi0.5TiO3氧离子导体电学性能的影响分析[J]. 材料工程, 2019, 47(8): 28-32.
[4] 吴闪, 朱延俊, 赵梦媛, 解昊, 杨星, 边凌锋, 孟彬. Co元素掺杂对CeO2基固态电解质导电行为的影响[J]. 材料工程, 2018, 46(5): 133-138.
[5] 何卫, 王利民, 蔡炜, 汤超, 姚辉. 氮掺杂碳纳米管/铝基复合材料的制备及性能[J]. 材料工程, 2016, 44(2): 49-55.
[6] 李亮, 肖长发, 黄庆林, 胡晓宇. PTFE/PAN共混中空纤维膜的制备与性能[J]. 材料工程, 2013, 0(1): 12-15,20.
[7] 张志华, 潘复生, 陈先华, 刘娟. 镁及其合金的电磁屏蔽性能研究[J]. 材料工程, 2013, 0(1): 52-57.
[8] 王攀, 郑玉婴, 李宝铭, 张通. PVPy/MWNTs纳米复合材料的制备及其导电性能研究[J]. 材料工程, 2012, 0(7): 71-75.
[9] 郑育英, 廖世军, 黄慧民, 王俏运. NiO-YSZ纳米复合粉体的制备及其表征[J]. 材料工程, 2011, 0(8): 68-71.
[10] 陈进, 张海燕, 刘晓平, 李丽萍. 碳包铜纳米颗粒的制备及其性能研究[J]. 材料工程, 2011, 0(7): 31-33,89.
[11] 张小帆, 邢丽, 杨成刚, 柯黎明. 未焊透缺陷深度对LY12铝合金搅拌摩擦焊焊缝电导率的影响[J]. 材料工程, 2010, 0(2): 13-16.
[12] 闫剑锋, 邹贵生, 李健, 吴爱萍. 纳米银焊膏的烧结性能及其用于铜连接的研究[J]. 材料工程, 2010, 0(10): 5-8.
[13] 郑文景, 周万城, 罗发, 于新民. SiC纤维表面C涂层的制备及介电性能研究[J]. 材料工程, 2009, 0(11): 36-39.
[14] 帅歌旺, 方平, 郭正华, 卢百平. 机械合金化制备Cu-Fe过饱和固溶体及其时效分解[J]. 材料工程, 2008, 0(12): 51-54.
[15] 戴剑锋, 高建龙, 乔宪武, 王青, 李维学, 杜晓芳. CNTs定向排列的CNTs/PMMA电导率低突增效应研究[J]. 材料工程, 2008, 0(10): 1-4,9.
Full text



版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持