Please wait a minute...
 
2222材料工程  2019, Vol. 47 Issue (7): 11-18    DOI: 10.11868/j.issn.1001-4381.2018.000395
  综述 本期目录 | 过刊浏览 | 高级检索 |
超支化聚合物(HBPs)改性环氧树脂的研究进展
陈珂龙, 张桐, 崔溢, 王智勇()
中国航发北京航空材料研究院 隐身材料重点实验室, 北京 100095
Progress of hyperbranched polymers (HBPs) as modifiers in epoxy resins
Ke-long CHEN, Tong ZHANG, Yi CUI, Zhi-yong WANG()
Key Laboratory of Science and Technology on Stealth Materials, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
全文: PDF(856 KB)   HTML ( 13 )  
输出: BibTeX | EndNote (RIS)      
摘要 

超支化聚合物在不影响工艺性的前提下对环氧树脂有明显的增强、增韧作用。本文主要概述了超支化聚合物对环氧树脂力学性能、耐热性能的影响,主要包括:聚酯超支化聚合物改性环氧树脂、聚酰胺/聚酰亚胺/聚乙烯亚胺超支化聚合物改性环氧树脂、有机硅超支化聚合物改性环氧树脂以及其他超支化聚合物改性环氧树脂等。此外,还指出了目前超支化聚合物改性环氧树脂的缺点以及未来的发展方向。当前限制HBPs在环氧树脂改性领域内大规模应用的主要缺点在于大多数HBPs合成步骤繁琐复杂,合成成本较高。鉴于此,在未来随着更简单、绿色的合成方法的出现,HBPs在其他新兴领域以及改性树脂中的应用会越来越广泛。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈珂龙
张桐
崔溢
王智勇
关键词 超支化聚合物环氧树脂改性增强增韧    
Abstract

Hyperbranched polymers (HBPs) are a new kind of polymers used as modifiers of epoxy resins to increase their strength and toughness without affecting the processability. The influence of some HBPs on the physical properties and thermal resistance of epoxy resin was summarized in this paper, including four parts:hyperbranched polyether as an epoxy modifier, hyperbranched polyamide/polyimide/polyethyleneimine as an epoxy modifier, hyperbranched polysiloxanes as an epoxy modifier and other hyperbranched polymers as an epoxy modifier. Then the drawback of hyperbranched polymers used as modifiers of epoxy resins was revealed. In addition, more and more fascinating materials and devices based on hyperbranched polymers will be successfully developed and fabricated in the future. The main limitation of the HBPs in the field of epoxy resin modification is that the synthesis steps of most HBPs are cumbersome. Thus, in the future, with the advent of simpler, greener synthetic methods, HBPs will be more widely used in other emerging fields and modified resins.

Key wordshyperbranched polymers (HBPs)    epoxy resin    modification    strength and toughness
收稿日期: 2018-04-10      出版日期: 2019-07-19
中图分类号:  O631.1  
通讯作者: 王智勇     E-mail: zywang91@163.com
作者简介: 王智勇(1965-),男,研究员,博士,研究方向为隐身材料、复合材料及树脂改性等,联系地址:北京市81信箱9号箱(100095),E-mail: zywang91@163.com
引用本文:   
陈珂龙, 张桐, 崔溢, 王智勇. 超支化聚合物(HBPs)改性环氧树脂的研究进展[J]. 材料工程, 2019, 47(7): 11-18.
Ke-long CHEN, Tong ZHANG, Yi CUI, Zhi-yong WANG. Progress of hyperbranched polymers (HBPs) as modifiers in epoxy resins. Journal of Materials Engineering, 2019, 47(7): 11-18.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000395      或      http://jme.biam.ac.cn/CN/Y2019/V47/I7/11
Fig.1  各种聚合物结构及其各自分支程度的示意图
Fig.2  聚醚HBPs(HBPE, EHBPE)的合成过程[46]
Fig.3  三级胺封端HBPs结构式[47]
1 WILKINSON A N , KINLOCH I A , OTHMAN R N , et al. Low viscosity processing using hybrid CNT-coated silica particles to form electrically conductive epoxy resin composites[J]. Polymer, 2016, 98, 32- 38.
doi: 10.1016/j.polymer.2016.06.009
2 JOHNSEN B B , KIHLOCH A J , MOHAMMED R D , et al. Toughening mechanisms of nanoparticle-modified epoxy polymers[J]. Polymer, 2007, 48, 530- 541.
doi: 10.1016/j.polymer.2006.11.038
3 EL-HADEK M A . Fracture mechanics of rubber epoxy comp-osites[J]. Metallurgical and Materials Transactions A, 2014, 45 (9): 4046- 4054.
doi: 10.1007/s11661-014-2315-0
4 JAJAM K C , RAHMAN M M , HOSUR M V , et al. Fracture behavior of epoxy nanocomposites modified with polyol diluent and amino-functionalized multi-walled carbon nanotubes:a load-ing rate study[J]. Composites Part A:Applied Science and Manufacturing, 2014, 59, 57- 69.
doi: 10.1016/j.compositesa.2013.12.014
5 KHARE K S , KHAHBAZ F , KHARE R . Effect of carbon nanotube functionalization on mechanical and thermal properties of cross-linked epoxy-carbon nanotube nanocomposites:role of strengthening the interfacial interactions[J]. ACS Applied Materials & Interfaces, 2014, 6 (9): 6098- 6110.
6 DONG L , ZHOU W , SUI X , et al. Thermal, mechanical, and dielectric properties of epoxy resin modified using carboxyl-terminated polybutadiene liquid rubber[J]. Journal of Elastomers and Plastics, 2016, 49 (4): 1- 17.
7 DINESH K K , KOTHANDARAMAN B . Modification of (DGEBA) epoxy resin with maleated depolymerised natural rub-ber[J]. Express Polymer Letters, 2008, 2 (4): 302- 311.
doi: 10.3144/expresspolymlett.2008.36
8 RATNA D , BANTHIA A K . Rubber toughened epoxy[J]. Macromolecular Reasearch, 2004, 12 (1): 11- 21.
doi: 10.1007/BF03218989
9 SOARES B G , LEYVA M E , MOREIRA V X , et al. Morph-ology and dielectric properties of an epoxy network modified by end-functionalized liquid polybutadiene[J]. Journal of Polymer Science Part B:Polymer Physics, 2004, 42 (22): 4053- 4062.
doi: 10.1002/polb.v42:22
10 BARCIA F L , AMARAL T P , SOARES B G . Synthesis and properties of epoxy resin modified with epoxy-terminated liquid polybutadiene[J]. Polymer, 2003, 44 (19): 5811- 5819.
doi: 10.1016/S0032-3861(03)00537-8
11 JACQUES N S , FREDERICK J M . Effect of rubber particle size on deformation mechanisms in glassy epoxy[J]. Polymer Engi-neering and Science, 1973, 13 (1): 29- 34.
doi: 10.1002/(ISSN)1548-2634
12 ZHANG D , LIU C , CHEN S , et al. Highly efficient prepa-ration of hyperbranched epoxy resins by UV-initiated thiol-ene click reaction[J]. Progress in Organic Coatings, 2016, 101, 178- 185.
doi: 10.1016/j.porgcoat.2016.08.010
13 BARUA S , CHATTOPADHYAY P , AIDEW L , et al. Infe-ction-resistant hyperbranched epoxy nanocomposite as a scaffold for skin tissue regeneration[J]. Polymer International, 2015, 64 (2): 303- 311.
doi: 10.1002/pi.2015.64.issue-2
14 ZHANG Z Y , GU A J , LIANG G Z , et al. A novel hyperb-ranched polysiloxane containing epoxy and phosphaphenanthrene groups and its multi-functional modification of cyanate ester resin[J]. Soft Materials, 2013, 11 (3): 346- 352.
doi: 10.1080/1539445X.2012.658941
15 ZHANG D , LIANG E , LI T , et al. The effect of molecular weight of hyperbranched epoxy resins with a silicone skeleton on performance[J]. RSC Advances, 2013, (3): 9522- 9529.
16 BOOGH L , PETTERSSON B , MANSON J E . Dendritic hyper-branched polymers as tougheners for epoxy resins[J]. Polymer, 1999, 40 (9): 2249- 2261.
doi: 10.1016/S0032-3861(98)00464-9
17 WU H , XU J , HEIDEN P . Investigation of readily processable thermoplastic-toughened thermosets Ⅴ epoxy resin toughened with hyperbranched polyester[J]. Journal of Applied Polymer Science, 1999, 72 (2): 151- 163.
doi: 10.1002/(ISSN)1097-4628
18 SOARES V P , RAMOS V D , RANGEL G W , et al. Hydroxy-terminated polybutadiene toughened epoxy resin:chemical modification, microstructure, and impact strength[J]. Advance in Polymer Technology, 2002, 21 (1): 25- 32.
doi: 10.1002/(ISSN)1098-2329
19 ACHARY P , LATHA P , RAMASWAMY R . Room temper-ature curing of CTBN-toughened epoxy adhesive with elevated temperature service capability[J]. Journal of Applied Polymer Science, 1990, 41, 151- 162.
doi: 10.1002/app.1990.070410113
20 RATNA D . Modification of epoxy resins for improvement of adhesion:a critical review[J]. Journal of Adhesion Science and Technology, 2003, 17 (12): 1655- 1668.
doi: 10.1163/156856103322396721
21 NIU S , YAN H , LI S , et al. Bright blue photoluminescence emitted from the novel hyperbranched polysiloxane-containing unconventional chromogens[J]. Macromolecular Chemistry and Physics, 2016, 217 (10): 1185- 1190.
doi: 10.1002/macp.v217.10
22 LU H , FENG L , LI S , et al. Unexpected strong blue photol-uminescence produced from the aggregation of unconventional chromophores in novel siloxane-poly(amidoamine) dendrimers[J]. Macromolecules, 2015, 48 (3): 476- 482.
doi: 10.1021/ma502352x
23 YANG W , PAN C . Synthesis and fluorescent properties of biodegradable hyperbranched poly(amido amine)s[J]. Macrom-olecular Rapid Communications, 2009, 30 (24): 2096- 2101.
doi: 10.1002/marc.v30:24
24 LIU Y , GOH S H . Blue photoluminescence from hyperbranched poly(amino ester)s[J]. Macromolecules, 2005, 38, 9906- 9909.
doi: 10.1021/ma051407x
25 CARR P L , DAVIES G R , FEAST W J , et al. Dielectric and mechanical characterization of aryl ester dendrimer/PET blends[J]. Polymer, 1996, 37 (12): 2395- 2401.
doi: 10.1016/0032-3861(96)85351-1
26 RATNA D , SIMON G P . Thermomechanical properties and morphology of blends of a hydroxy-functionalized hyperbranched polymer and epoxy resin[J]. Polymer, 2001, 42 (21): 8833- 8839.
doi: 10.1016/S0032-3861(01)00341-X
27 BLANCO I , CICALA G , FARO C L , et al. Thermomechanical and morphological properties of epoxy resins modified with functionalized hyperbranched polyester[J]. Polymer Engineering & Science, 2006, 46 (11): 1502- 1511.
28 OH J H , JANG J , LEE S H . Curing behavior of tetrafunctional epoxy resin/hyperbranched polymer system[J]. Polymer, 2001, 42 (20): 8339- 8347.
doi: 10.1016/S0032-3861(01)00365-2
29 RATNA D , SIMON G P . Thermal and mechanical properties of a hydroxyl-functional dendritic hyperbranched polymer and trifunctional epoxy resin blends[J]. Polymer Engineering & Science, 2001, 41 (10): 1815- 1822.
30 RATNA D , VARLEY R , RAMAN R K , et al. Studies on blends of epoxy-functionalized hyperbranched polymer and epoxy resin[J]. Journal of Materials Science, 2003, 38 (1): 147- 154.
doi: 10.1023/A:1021182320285
31 FERNANDEZ-FRANCOS X , FOIX D , SERRA A , et al. Novel thermosets based on DGEBA and hyperbranched polymers modified with vinyl and epoxy end groups[J]. Reactive and Functional Polymers, 2010, 70 (10): 798- 806.
doi: 10.1016/j.reactfunctpolym.2010.07.008
32 FERNANDEZ-FRANCOS X , SALLA J M , CADENATO A , et al. A new strategy for controlling shrinkage of DGEBA resins cured by cationic copolymerization with hydroxyl-terminated hyperbranched polymers and ytterbium triflate as an initiator[J]. Journal of Applied Polymer Science, 2008, 111 (6): 2822- 2829.
33 MORANCHO J M , CADENATO A , RAMIS X , et al. Thermal curing and photocuring of an epoxy resin modified with a hyper-branched polymer[J]. Thermochimica Acta, 2010, 510 (1/2): 1- 8.
34 MORELL M , ERBER M , RAMIS X , et al. New epoxy ther-mosets modified with hyperbranched poly(ester-amide) of differ-ent molecular weight[J]. European Polymer Journal, 2010, 46 (7): 1498- 1509.
doi: 10.1016/j.eurpolymj.2010.04.015
35 FLORES M , FERNANDEZ-FRANCOS X , FERRANDO F , et al. Efficient impact resistance improvement of epoxy/anhydride thermosets by adding hyperbranched polyesters partially modified with undecenoyl chains[J]. Polymer, 2012, 53 (23): 5232- 5241.
doi: 10.1016/j.polymer.2012.09.031
36 FOIX D , YU Y , SERRA A , et al. Study on the chemical modi-fication of epoxy/anhydride thermosets using a hydroxyl termi-nated hyperbranched polymer[J]. European Polymer Journal, 2009, 45 (5): 1454- 1466.
doi: 10.1016/j.eurpolymj.2009.02.003
37 FLORES M , FERNANDEZ-FRANCOS X , RAMIS X , et al. Novel epoxy-anhydride thermosets modified with a hyperbr-anched polyester as toughness enhancer Ⅰ kinetics study[J]. Thermochimica Acta, 2012, 544, 17- 26.
doi: 10.1016/j.tca.2012.06.008
38 DABRITZ F , VOIT B , NAGUIB M , et al. Hyperstar poly(ester-methacrylate)s as additives in thermally and photocured epoxy resins[J]. Polymer, 2011, 52 (25): 5723- 5731.
doi: 10.1016/j.polymer.2011.10.023
39 SANGERMANO M , PRIOLA A , MALUCELLI G , et al. Phenolic hyperbranched polymers as additives in cationic photop-olymerization of epoxy systems[J]. Macromolecular Materials and Engineering, 2004, 289 (5): 442- 446.
doi: 10.1002/(ISSN)1439-2054
40 SANGERMANO M , MALUCELLI G , BONGIOVANNI R , et al. Investigation on the effect of the presence of hyperbranched polymers on thermal and mechanical properties of an epoxy UV-cured system[J]. Polymer International, 2005, 54 (6): 917- 921.
doi: 10.1002/(ISSN)1097-0126
41 MORANCHO J M , CADENATO A , RAMIS X , et al. Effect of a hyperbranched polymer over the thermal curing and the photocuring of an epoxy resin[J]. Journal of Thermal Analysis and Calorimetry, 2011, 105 (2): 479- 488.
doi: 10.1007/s10973-010-1277-8
42 FOIX D , FERNANDEZ-FRANCOS X , SSALLA J M , et al. New thermosets obtained from bisphenol A diglycidyl ether and hydroxyl-ended hyperbranched polymers partially blocked with benzoyl and trimethylsilyl groups[J]. Polymer International, 2011, 60 (3): 389- 397.
doi: 10.1002/pi.v60.3
43 SANGERMANO M , SAYED H , VOIT B . Ethoxysilyl-modified hyperbranched polyesters as mulitfunctional coupling agents for epoxy-silica hybrid coatings[J]. Polymer, 2011, 52 (10): 2103- 2109.
doi: 10.1016/j.polymer.2011.03.047
44 DENG S , YE L , FRIEDRICH K . Fracture behaviours of epoxy nanocomposites with nano-silica at low and elevated temper-atures[J]. Journal of Materials Science, 2007, 42 (8): 2766- 2774.
doi: 10.1007/s10853-006-1420-x
45 YANG J , CHEN Z , YANG G , et al. Simultaneous improve-ments in the cryogenic tensile strength, ductility and impact str-ength of epoxy resins by a hyperbranched polymer[J]. Polymer, 2008, 49 (13/14): 3168- 3175.
46 LIU T , NIE Y , CHEN R , et al. Hyperbranched polyether as an all-purpose epoxy modifier:controlled synthesis and toughening mechanisms[J]. Journal of Materials Chemistry A, 2015, 3 (3): 1188- 1198.
doi: 10.1039/C4TA04841E
47 JIN F L , PARK S J . Thermal properties and toughness perfo-rmance of hyperbranched-polyimide-modified epoxy resins[J]. Journal of Polymer Science Part B:Polymer Physics, 2006, 44 (23): 3348- 3356.
doi: 10.1002/(ISSN)1099-0488
48 SANTIAGO D , FERNANDEZ-FRANCOS X , RAMIS X , et al. Comparative curing kinetics and thermal-mechanical properties of DGEBA thermosets cured with a hyperbranched poly(ethylen-eimine) and an aliphatic triamine[J]. Thermochimica Acta, 2011, 526 (1/2): 9- 21.
49 MORANCHO J M , FERNANDEZ-FRANCOS X , ACEBO C , et al. Thermal curing of an epoxy-anhydride system modified with hyperbranched poly(ethylene imine)s with different term-inal groups[J]. Journal of Thermal Analysis and Calorimetry, 2017, 127 (1): 645- 654.
doi: 10.1007/s10973-016-5376-z
50 ZHU M , GU A , LIANG G , et al. High-performance transp-arent solvent-free silicone resins with stable storage and low viscosity based on new hyperbranched polysiloxanes[J]. High Performance Polymers, 2013, 25 (5): 594- 608.
doi: 10.1177/0954008313477119
51 LIU P , GU A , LIANG G , et al. Preparation and properties of novel high performance UV-curable epoxy acrylate/hyperb-ranched polysiloxane coatings[J]. Progress in Organic Coatings, 2012, 74 (1): 142- 150.
doi: 10.1016/j.porgcoat.2011.11.026
52 ZHANG D H , LIANG E , CHEN S , et al. Environment-friendly synthesis and performance of a novel hyperbranched epoxy resin with a silicone skeleton[J]. RSC Adances, 2013, 3, 3095- 3102.
doi: 10.1039/c2ra22969b
53 LIU Q , BAO X , DENG S , et al. The investigation of methyl phenyl silicone resin/epoxy resin using epoxy-polysiloxane as compatibilizer[J]. Journal of Thermal Analysis and Calori-metry, 2014, 118 (1): 247- 254.
doi: 10.1007/s10973-014-4017-7
54 MORELL M , LEDERER A , RAMIS X , et al. Multiarm star poly(glycidol)-block-poly(ε-caprolactone) of different arm lengths and their use as modifiers of diglycidylether of bisphenol a thermosets[J]. Journal of Polymer Science Part A:Polymer Chemistry, 2011, 49 (11): 2395- 2406.
doi: 10.1002/pola.v49.11
55 MENG Y , ZHANG X , DU B , et al. Thermosets with core-shell nanodomain by incorporation of core crosslinked star polymer into epoxy resin[J]. Polymer, 2011, 52 (2): 391- 399.
doi: 10.1016/j.polymer.2010.11.046
56 NGUYEN F N , BERG J C . Novel core-shell (dendrimer) epoxy tougheners:processing and hot-wet performance[J]. Comp-osites Part A:Applied Science and Manufacturing, 2008, 39 (6): 1007- 1011.
doi: 10.1016/j.compositesa.2008.03.005
57 FERDOSIAN F , YUAN Z , ANDERSON M , et al. Synthesis and characterization of hydrolysis lignin-based epoxy resins[J]. Industrial Corps and Products, 2016, 91, 295- 301.
doi: 10.1016/j.indcrop.2016.07.020
58 RADOMAN T S , DZUNUZOVIC J V , GRGUR B N , et al. Improvement of the epoxy coating properties by incorporation of polyaniline surface treated TiO2 nanoparticles previously modi-fied with vitamin B6[J]. Progress in Organic Coatings, 2016, 99, 346- 355.
doi: 10.1016/j.porgcoat.2016.06.014
59 VOIT B . Hyperbranched polymers-all problems solved after 15 years of research[J]. Journal of Polymer Science Part A:Polymer Chemistry, 2005, 43 (13): 2679- 2699.
doi: 10.1002/(ISSN)1099-0518
60 WILMS D , STIRIBA S , FREY A . Hyperbranched polygl-ycerols:from the controlled synthesis of biocompatible polyether polyols to multipurpose applications[J]. Accounts of Chemical Research, 2010, 43 (1): 129- 141.
doi: 10.1021/ar900158p
[1] 焦晨, 梁绘昕, 叶昀, 张寒旭, 何志静, 杨友文, 沈理达, 侯锋. 光固化生物陶瓷功能化研究进展[J]. 材料工程, 2022, 50(7): 30-39.
[2] 姜莹, 申心畅, 郭丽敏, 毕科, 王晓慧, 李龙土. 陶瓷电介质储能材料研究进展[J]. 材料工程, 2022, 50(4): 96-103.
[3] 贾耀雄, 许良, 敖清阳, 张文正, 王涛, 魏娟. 不同热氧环境对T800碳纤维/环氧树脂复合材料力学性能的影响[J]. 材料工程, 2022, 50(4): 156-161.
[4] 万长鑫, 詹胜鹏, 陈辉, 李银华, 贾丹, 李健, 段海涛. 功能性填料改性聚合物材料的摩擦学研究进展[J]. 材料工程, 2022, 50(2): 73-83.
[5] 李晴, 钱付平, 董伟, 韩云龙, 鲁进利. 硅烷偶联剂KH570改性TiO2超疏水滤料的制备与性能[J]. 材料工程, 2022, 50(2): 144-152.
[6] 张安邦, 汪晨阳, 赵尚骞, 常增花, 王建涛. 固态电池中的正极/电解质界面性质研究进展[J]. 材料工程, 2022, 50(11): 46-62.
[7] 王大伟, 李晔, 巨乐章, 朱安安. 氧气等离子体处理对CFRP表面特性及胶接界面力学性能的影响[J]. 材料工程, 2022, 50(10): 118-127.
[8] 王牧, 曾夏茂, 苗霞, 魏浩光, 周仕明, 冯岸超. 三维石墨烯-吡咯气凝胶/环氧树脂复合材料的制备及其性能[J]. 材料工程, 2022, 50(1): 117-124.
[9] 刘龙, 梁森, 王得盼, 周越松, 郑长升. 硅烷偶联剂及氧化石墨烯二次改性对芳纶纤维界面性能的影响[J]. 材料工程, 2022, 50(1): 145-153.
[10] 解齐颖, 张祎, 朱阳, 崔红. 超高温陶瓷改性碳/碳复合材料[J]. 材料工程, 2021, 49(7): 46-55.
[11] 张代军, 陈俊, 包建文, 钟翔屿, 陈祥宝. 树脂基体中热塑性树脂含量对碳纤维环氧复合材料Ⅱ型层间断裂韧性的影响[J]. 材料工程, 2021, 49(6): 178-184.
[12] 陈宇, 张代军, 李军, 温嘉轩, 陈祥宝. 三维结构石墨烯气凝胶/环氧树脂复合材料的制备和电磁屏蔽性能[J]. 材料工程, 2021, 49(5): 82-88.
[13] 张盼盼, 黄惠, 何亚鹏, 李宵波, 郭忠诚. 锂离子电池富锂锰正极材料的最新进展[J]. 材料工程, 2021, 49(3): 48-58.
[14] 毛龙, 刘小超, 谢斌, 吴慧青, 刘跃军. 植酸-金属离子螯合物改性层状黏土及其在聚己内酯中的增强与抗菌效应研究[J]. 材料工程, 2021, 49(2): 127-135.
[15] 汪荣香, 洪立鑫, 章晓波. 生物医用镁合金耐腐蚀性能研究进展[J]. 材料工程, 2021, 49(12): 14-27.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn