Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (1): 106-111    DOI: 10.11868/j.issn.1001-4381.2018.000487
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
Al0.1CoCrFeNi高熵合金的力学性能和变形机理
陈刚1, 王璐1, 杨静2, 李强1, 吕品1, 马胜国1,2,3
1. 太原理工大学 应用力学与生物医学工程研究所, 太原 030024;
2. 太原理工大学 材料强度与结构冲击山西省重点实验室, 太原 030024;
3. 太原理工大学 力学国家级实验教学示范中心, 太原 030024
Mechanical properties and deformation mechanisms of Al0.1CoCrFeNi high-entropy alloys
CHEN Gang1, WANG Lu1, YANG Jing2, LI Qiang1, LYU Pin1, MA Sheng-guo1,2,3
1. Institute of Applied Mechanics and Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China;
2. Shanxi Key Laboratory of Material Strength and Structural Impact, Taiyuan University of Technology, Taiyuan 030024, China;
3. National Demonstration Center for Experimental Mechanics Education, Taiyuan University of Technology, Taiyuan 030024, China
全文: PDF(10854 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 Al0.1CoCrFeNi高熵合金由真空磁悬浮熔炼制备而成,利用INSTRON力学试验机进行室温准静态拉伸,采用X射线衍射仪(XRD)、光学显微镜、扫描电镜(SEM)、透射电镜(TEM)和纳米压痕仪对实验前后样品的晶体结构、形貌、成分、组织、硬度和蠕变行为进行了研究。结果表明,经拉伸变形后,合金具有优异的强塑积(约为24GPa·%)、显著的应变硬化效应和更好的抗蠕变行为。试样的断裂模式为典型的微孔聚集型断裂。晶粒内部含有大量的微带组织,其带宽为200~300nm。分析认为,微观组织中的微带诱导塑性效应是合金具有优异的应变硬化能力的一个重要原因。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈刚
王璐
杨静
李强
吕品
马胜国
关键词 高熵合金微观组织力学性能微带诱导塑性效应    
Abstract:The Al0.1CoCrFeNi high-entropy alloy (HEA) was melted by vacuum magnetic levitation, and quasi-static tensile experiments were performed by using an INSTRON mechanical testing system. The crystal structure, surface morphology, composition, microstructure, hardness, and creep behavior of the samples before and after the experiment were analyzed by X-ray diffraction, optical microscopy, scanning electron microscopy, transmission electron microscopy, and nanoidentation. Results reveal that after tensile deformation, the alloy has an excellent strength-ductility combination, a significant strain-hardening effect, and an improved creep resistance. The fracture mode of sample is the typical microvoid accumulation fracture; there are a lot of microbands (the band width is about 200-300nm) inside the grains. The excellent strain-hardening ability is believed to be originated from the microband-induced plasticity effect during tensile loading.
Key wordshigh-entropy alloy    microstructure    mechanical property    microband-induced plasticity effect
收稿日期: 2018-04-28      出版日期: 2019-01-16
中图分类号:  TG113  
通讯作者: 马胜国(1983-),男,讲师,博士,研究方向为新型金属材料(如高熵合金、非晶合金等)的冲击动力学行为研究,联系地址:山西省太原市万柏林区迎泽西大街79号太原理工大学迎西校区(030024),E-mail:mashengguo@tyut.edu.cn     E-mail: mashengguo@tyut.edu.cn
引用本文:   
陈刚, 王璐, 杨静, 李强, 吕品, 马胜国. Al0.1CoCrFeNi高熵合金的力学性能和变形机理[J]. 材料工程, 2019, 47(1): 106-111.
CHEN Gang, WANG Lu, YANG Jing, LI Qiang, LYU Pin, MA Sheng-guo. Mechanical properties and deformation mechanisms of Al0.1CoCrFeNi high-entropy alloys. Journal of Materials Engineering, 2019, 47(1): 106-111.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000487      或      http://jme.biam.ac.cn/CN/Y2019/V47/I1/106
[1] YEH J W, CHEN S K, LIN S J, et al. Nanostructured high-entropy alloys with multiple principal elements:novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6(5):299-303.
[2] CANTOR B, CHANG I T H, KNIGHT P, et al. Microstructural development in equiatomic multicomponent alloys[J]. Materials Science and Engineering:A, 2004, 375/377(1):213-218.
[3] YAO H W, QIAO J W, GAO M C, et al. NbTaV-(Ti,W) refractory high-entropy alloys:experiments and modeling[J]. Materials Science and Engineering:A, 2016, 674:203-211.
[4] ZHAO Y J, QIAO J W, MA S G, et al. A hexagonal close-packed high-entropy alloy:the effect of entropy[J]. Materials & Design, 2016, 96:10-15.
[5] GLUDOVATZ B, HOHENWARTER A, CATOOR D, et al. A fracture-resistant high-entropy alloy for cryogenic applications[J]. Science, 2014, 345(6201):1153-1158.
[6] MA S G, JIAO Z M, QIAO J W, et al. Strain rate effects on the dynamic mechanical properties of the AlCrCuFeNi2 high-entropy alloy[J]. Materials Science and Engineering:A, 2016, 649:35-38.
[7] SENKOV O N, WILKS G B, SCOTT J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20, refractory high entropy alloys[J]. Intermetallics, 2011, 19(5):698-706.
[8] HSU C Y, SHEU T S, YEH J W, et al. Effect of iron content on wear behavior of AlCoCrFexMo0.5Ni high-entropy alloys[J]. Wear, 2010, 268(5):653-659.
[9] 刘用,马胜国,刘英杰,等. AlxCrCuFeNi2多主元高熵合金的摩擦磨损性能[J]. 材料工程, 2018, 46(2):99-104. LIU Y, MA S G, LIU Y J, et al. Friction and wear properties of AlxCrCuFeNi2 high-entropy alloys with multi-principal-elements[J]. Journal of Materials Engineering, 2018, 46(2):99-104.
[10] MEYER M A. Mechanical behavior of materials[M]. Cambridge, United Kingdom:Cambridge University Press, 2004.
[11] GUTIERREZ-URRUTIA I, ZAEFFERER S, RAABE D. The effect of grain size and grain orientation on deformation twinning in a Fe-22wt.%Mn-0.6wt.%C TWIP steel[J]. Materials Science and Engineering:A, 2010, 527(15):3552-3560.
[12] SHEN Y F, JIA N, MISRA R D K, et al. Softening behavior by excessive twinning and adiabatic heating at high strain rate in a Fe-20Mn-0.6C TWIP steel[J]. Acta Materialia, 2016, 103:229-242.
[13] XU S, RUAN D, BEYNON J H, et al. Dynamic tensile behavior of TWIP steel under intermediate strain rate loading[J]. Materials Science and Engineering:A, 2013, 573(573):132-140.
[14] WANG Z, GAO M C, MA S G, et al. Effect of cold rolling on the microstructure and mechanical properties of Al0.25CoCrFe1.25Ni1.25, high-entropy alloy[J]. Materials Science and Engineering:A, 2015, 645:163-169.
[15] GAO M C, YEH J W, LIAW P K, et al. High-entropy alloys:fundamentals and applications[M]. Basel, Switzerland:Springer, 2015.
[16] GUTIERREZ-URRUTIA I, RAABE D. Microbanding mechanism in an Fe-Mn-C high-Mn twinning-induced plasticity steel[J]. Scripta Materialia, 2013, 69(1):53-56.
[17] WU W, SONG M, SONG N, et al. Dual mechanisms of grain refinement in a FeCoCrNi high-entropy alloy processed by high-pressure torsion[J]. Scientific Reports, 2017, 7:46720.
[18] WU W, GUO L, LIU B, et al. Effects of torsional deformation on the microstructures and mechanical properties of a CoCrFeNiMo0.15 high-entropy alloy[J]. Philosophical Magazine, 2017, 97(34):1-17.
[19] WANG Z, BAKER I, GUO W, et al. The effect of carbon on the microstructures, mechanical properties and deformation mechanisms of thermo-mechanically treated Fe40.4Ni11.3Mn34.8Al7.5Cr6, high entropy alloys[J]. Acta Materialia, 2017, 126:346-360.
[20] HUANG J C, GRAY Ⅲ G T. Microband formation in shock-loaded and quasi-statically deformed metals[J]. Acta Metallurgica, 1989, 37(12):3335-3347.
[21] ALAGARSAMY K, FORTIER A, KOMARASAMY M, et al. Mechanical properties of high entropy alloy Al0.1CoCrFeNi for peripheral vascular stent application[J]. Cardiovascular Engineering and Technology, 2016, 7(4):448-454.
[22] ZHANG L, YU P, CHENG H, et al. Nanoindentation creep behavior of an Al0.3CoCrFeNi high-entropy alloy[J]. Metallurgical & Materials Transactions A, 2016, 47(12):1-5.
[23] LI Z, ZHAO S, DIAO H, et al. High-velocity deformation of Al0.3CoCrFeNi high-entropy alloy:remarkable resistance to shear failure[J]. Scientific Reports, 2017, 7:42742.
[1] 赵云松, 张迈, 郭小童, 郭媛媛, 赵昊, 刘砚飞, 姜华, 张剑, 骆宇时. 航空发动机涡轮叶片超温服役损伤的研究进展[J]. 材料工程, 2020, 48(9): 24-33.
[2] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[3] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[4] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[5] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[6] 王彦菊, 姜嘉赢, 沙爱学, 李兴无. 新型高温合金材料建模及涡轮盘成形工艺模拟[J]. 材料工程, 2020, 48(7): 127-132.
[7] 赵强, 祝文卉, 邵天巍, 帅焱林, 刘佳涛, 王冉, 张利, 梁晓波. Ti-22Al-25Nb合金惯性摩擦焊接头显微组织与力学性能[J]. 材料工程, 2020, 48(6): 140-147.
[8] 李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
[9] 李淑文, 赵孔银, 陈康, 李金刚, 赵磊, 王晓磊, 魏俊富. TiO2共混丝朊接枝聚丙烯腈过滤膜制备及性能研究[J]. 材料工程, 2020, 48(3): 47-52.
[10] 赵新龙, 金鑫, 丁成成, 俞娟, 王晓东, 黄培. 热处理时间对聚甲基丙烯酰亚胺(PMI)泡沫结构和性能的影响[J]. 材料工程, 2020, 48(3): 53-58.
[11] 叶寒, 黄俊强, 张坚强, 李聪聪, 刘勇. 纳米WC增强选区激光熔化AlSi10Mg显微组织与力学性能[J]. 材料工程, 2020, 48(3): 75-83.
[12] 姚小飞, 田伟, 李楠, 王萍, 吕煜坤. 铜导线表面热浸镀PbSn合金镀层的组织与性能[J]. 材料工程, 2020, 48(3): 148-154.
[13] 刘也川, 张松, 谭俊哲, 关锰, 陶邵佳, 张春华. 机械滚压对A473M钢疲劳性能的影响[J]. 材料工程, 2020, 48(3): 163-169.
[14] 李昊卿, 田玉晶, 赵而团, 郭红, 方晓英. S32750双相不锈钢相界与晶界特征对其力学性能和耐蚀性能的影响[J]. 材料工程, 2020, 48(2): 133-139.
[15] 钦兰云, 何晓娣, 李明东, 杨光, 高博文. 退火处理对激光沉积制造TC4钛合金组织及力学性能影响[J]. 材料工程, 2020, 48(2): 148-155.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn