Please wait a minute...
 
2222材料工程  2020, Vol. 48 Issue (7): 162-169    DOI: 10.11868/j.issn.1001-4381.2018.001097
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
PTFE/epoxy全有机超疏水涂层制备
李为民1, 彭超义2,*(), 杨金水2, 邢素丽2
1 中国空气动力研究与发展中心 设备设计及测试技术研究所, 四川 绵阳 621000
2 国防科技大学 空天科学学院, 长沙 410073
Preparation of all-organic superhydrophobic PTFE/epoxy composite coatings
Wei-min LI1, Chao-yi PENG2,*(), Jin-shui YANG2, Su-li XING2
1 Facility Design and Instrumentation Institute, China Aerodynamics Research and Development Center, Mianyang 621000, Sichuan, China
2 College of Aerospace Science, National University of Defense Technology, Changsha 410073, China
全文: PDF(4033 KB)   HTML ( 4 )  
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 

采用纳米粒子构筑微-纳粗糙结构制备的超疏水涂层一般存在抗水流冲击能力差的缺点,极大限制了其户外应用前景。利用环氧树脂和聚四氟乙烯(PTFE)纳米粒子,通过喷涂和模压两种工艺分别制备低声阻系数的全有机超疏水涂层,基于水流冲击破坏机理设计实验分析涂层的抗水流冲击性能,并与商用超疏水涂层对比。结果表明:PTFE粒子为70%(质量分数,下同)时,其疏水性能最佳,静态接触角为164.13°,滚动角为3°;PTFE粒子为75%时,其抗水流冲击性能最佳,在被速度为22.77 m/s的水流冲击后接触角仍达到154.62°;与喷涂法相比,模压法能进一步提高涂层的抗水冲击性能。本研究所制备的全有机超疏水涂层同时还具有良好的附着性能和耐磨性能,在进行25次黏附剥离实验后涂层表面接触角为150.51°,滚动角为4°,在进行20次磨损实验后涂层表面接触角为149.21°,滚动角为9°。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李为民
彭超义
杨金水
邢素丽
关键词 超疏水涂层PTFE环氧树脂喷涂法模压法抗水冲击性能    
Abstract

Superhydrophobic coatings with micro-nano hierarchical structure constructed by nano particles usually have a poor behavior in water impact situation. This weakness limits superhydrophobic coatings' outdoor potential applications. A low-acoustic resistance all-organic superhydrophobic coating was prepared by spraying and compression molding methods with epoxy and PTFE particles. Water impact test was designed according to impact failure mechanism, and then water impact resistance was evaluated and compared with commercial superhydrophobic coatings'. The results indicate that the hydrophobicity reaches peak when coating contains 70% (mass fraction, the same below) PTFE particles, with 164.13° water contact angle(WCA) and 3° water slide angle(WSA). For water impact resistance, the coating with 75% PTFE particles has the best performance, it can keep the WCA at 154.62° after 22.77 ms-1 water jet impact test. And the molding coatings have better performance than sprayings. Besides, the results also show coating's good adhesion and wearability, for example, it can keep the WCA at 150.51° and WSA at 4° after 25-cycle tape peeling test, and keep the WCA at 149.21° and WSA at 9° after 20-cycle wear test.

Key wordssuperhydrophobic coating    PTFE    epoxy    spraying    compression molding    water impact resi-stance
收稿日期: 2018-09-17      出版日期: 2020-07-21
中图分类号:  TB332  
基金资助:国家自然科学基金(51403235)
通讯作者: 彭超义     E-mail: chaoyi.peng@foxmail.com
作者简介: 彭超义(1977-), 男, 副教授, 博士, 研究方向:高分子复合材料, 联系地址:湖南省长沙市开福区德雅路109号国防科技大学空天科学学院(410073), E-mail:chaoyi.peng@foxmail.com
引用本文:   
李为民, 彭超义, 杨金水, 邢素丽. PTFE/epoxy全有机超疏水涂层制备[J]. 材料工程, 2020, 48(7): 162-169.
Wei-min LI, Chao-yi PENG, Jin-shui YANG, Su-li XING. Preparation of all-organic superhydrophobic PTFE/epoxy composite coatings. Journal of Materials Engineering, 2020, 48(7): 162-169.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.001097      或      http://jme.biam.ac.cn/CN/Y2020/V48/I7/162
Fig.1  水冲击实验装置示意图
Fig.2  胶带黏附剥离实验示意图
Fig.3  磨损实验示意图
Fig.4  液滴(30 μL)在PTFE/epoxy复合涂层表面光学照片和接触角光学显微图
(a)喷涂法制备PTFE颗粒含量为50%的涂层;(b)喷涂法制备PTFE颗粒含量为75%的涂层;(c)模压法制备PTFE颗粒含量为75%的涂层
Fig.5  PTFE/epoxy复合涂层的微观形貌图
(a), (b)喷涂法制备PTFE颗粒含量为50%的涂层;(c), (d)喷涂法制备PTFE颗粒含量为75%的涂层;(e), (f)模压法制备PTFE颗粒含量为75%的涂层
Fig.6  喷涂法制备PTFE/epoxy复合涂层接触角和滚动角
Fig.7  5 cm高度水滴撞击涂层表面过程高速照片
(a)PTFE含量为60%喷涂法涂层;(b)PTFE含量为75%喷涂法涂层;(c)PTFE含量为75%模压法涂层
Water jetspeed/(m·s-1) WCA(60%)/(°) WCA(65%)/(°) WCA(70%)/(°) WCA(75%)/(°)
13.31 150.78 160.26 160.02 160.26
16.28 139.67 159.98 160.38 160.98
19.87 137.86 158.55 159.29
22.77 121.59 154.62
26.42 98.47
Table 1  不同PTFE含量的PTFE/epoxy复合涂层水冲击实验结果
Fig.8  水冲击实验后涂层的润湿特性变化情况
Fig.9  胶带黏附剥离实验结果
Fig.10  磨损实验结果
Fig.11  NeverWet涂层与喷涂法涂层磨损实验前后表面光学照片
(a)NeverWet涂层磨损前;(b)NeverWet涂层10次磨损实验后;(c)喷涂法涂层磨损前;(d)喷涂法涂层20次磨损实验后
1 CELIA E , DARMANIN T , GIVENCHY E T D , et al. Recent advances in designing superhydrophobic surfaces[J]. Journal of Colloid and Interface Science, 2013, 402 (2): 1- 18.
2 KE Q P , FU W Q , JIN H L , et al. Fabrication of mechanically robust superhydrophobic surfaces based on silica micro-nanoparticles and polydimethylsiloxane[J]. Surface and Coatings Technology, 2011, 205 (21/22): 4910- 4914.
3 FENG L , LI S H , LI Y S , et al. Super-hydrophobic surfaces:from nature to artifical[J]. Advanced Materials, 2004, 14 (24): 1857- 1860.
4 SEYEDMEHDI S A , ZHANG H , ZHU J . Fabrication of superhydrophobic coatings based on nanoparticles and fluoropolyurethane[J]. Journal of Applied Polymer Science, 2013, 128 (6): 4136- 4140.
doi: 10.1002/app.38418
5 YANG J , ZHANG Z , MEN X , et al. Reversible superhydrophobicity to superhydrophilicity switching of a carbon nanotube film via alternation of UV irradiation and dark storage[J]. Langmuir, 2010, 26 (12): 10198- 10202.
doi: 10.1021/la100355n
6 罗晓民, 魏梦媛, 曹敏. 耐腐蚀超疏水铜网的制备及其在油水分离中的应用[J]. 材料工程, 2018, 46 (5): 92- 98.
6 LUO X M , WEI M Y , CAO M . Preparation of superhydrophobic cu mesh with corrosion resistance and applications in oil-water separation[J]. Journal of Materials Engineering, 2018, 46 (5): 92- 98.
7 WU B , ZHOU M , LI J , et al. Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser[J]. Applied Surface Science, 2009, 256 (1): 61- 66.
doi: 10.1016/j.apsusc.2009.07.061
8 LIAO R , ZUO Z , GUO C , et al. Fabrication of superhydrophobic surface on aluminum by continuous chemical etching and its anti-icing property[J]. Applied Surface Science, 2014, 317, 701- 709.
doi: 10.1016/j.apsusc.2014.08.187
9 李晶, 赵世才, 杜锋, 等. 激光构筑槽棱与网格状结构超疏水耐腐蚀表面研究[J]. 材料工程, 2018, 46 (5): 86- 91.
9 LI J , ZHAO S C , DU F , et al. Fabrication of groove and grid structure surface with superhydrophobicity and corrosion resistance by laser[J]. Journal of Materials Engineering, 2018, 46 (5): 86- 91.
10 CHENG J , ZHANG Y , WANG Q , et al. Superhydrophobic polyurethane and ailica nanoparticles coating with high transparency and fluorescence[J]. Journal of Applied Polymer Science, 2013, 129 (5): 2959- 2965.
doi: 10.1002/app.39024
11 LATTHE S S , IMAI H , GANESAN V , et al. Superhydrophobic silica films by sol-gel co-precursor method[J]. Applied Surface Science, 2009, 256 (1): 217- 222.
doi: 10.1016/j.apsusc.2009.07.113
12 VILCNIK A , JERMAN I , ŠURCA VUK A , et al. Structural properties and antibacterial effects of hydrophobic and oleophobic sol-gel coatings for cotton fabrics[J]. Langmuir, 2009, 25 (10): 5869- 5880.
doi: 10.1021/la803742c
13 刘建峰, 肖新颜. 溶胶-凝胶法超疏水含氟硅聚氨酯丙烯酸酯/SiO2杂化涂层的制备[J]. 高分子材料科学与工程, 2014, 30 (6): 130- 135.
13 LIU J F , XIAO X Y . Preparation of superhydrophobic FSiPUA/SiO2 hybrid coatings via sol-gel method[J]. Polymer Materials Science and Engineering, 2014, 30 (6): 130- 135.
14 PANDA A , VARSHNEY P , MOHAPATRA S S , et al. Development of liquid repellent coating on cotton fabric by simple binary silanization with excellent self-cleaning and oil-water separation properties[J]. Carbohydrate Polymers, 2017, 181, 1052- 1060.
15 BAGHERI H , ALIOFKHAZRAEI M , FOROOSHANI H M , et al. Electro deposition of the hierarchical dual structure (HDS) nano crystalline Ni surface with high water repellency and self-cleaning properties[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 80, 883- 893.
doi: 10.1016/j.jtice.2017.07.023
16 ENGEL O G . Water drop collisions with solid surfaces[J]. Journal of Research of the National Bureau of Standards, 1955, 54 (5): 292- 295.
17 ADAMSON A W , GAST A P . Physical chemistry of surface[M]. 6th ed New York: Wiley, 1997.
18 ALTTI TORKKLI. Droplet microfluidics on a planar surface[D]. Espoo: Helsinki University of Technology, 2003.
19 TAO D , KRIPA K , VARANASI , et al. Nonwetting of impinging droplets on textured surfaces[J]. Applied Physics Letters, 2009, 94, 133109.
doi: 10.1063/1.3110054
20 HYUKM K , ADAM T P , KRIPA K V , et al. Rapid deceleration-driven wetting transition during pendant drop deposition on superhydrophobic surfaces[J]. Physical Review Letters, 2011, 106, 036102.
doi: 10.1103/PhysRevLett.106.036102
21 TANMOY M , MARISH K T , CARLO A , et al. On the nano engineering of superhydrophobic and impalement resistant surface textures below the freezing temperature[J]. Nano Letters, 2014, 14, 172- 182.
doi: 10.1021/nl4037092
[1] 夏先朝, 冯学磊, 孙京丽, 聂敬敬, 庞松, 袁勇, 董泽华. 镁合金超疏水环氧复合涂层的制备与性能[J]. 材料工程, 2022, 50(8): 124-132.
[2] 贾耀雄, 许良, 敖清阳, 张文正, 王涛, 魏娟. 不同热氧环境对T800碳纤维/环氧树脂复合材料力学性能的影响[J]. 材料工程, 2022, 50(4): 156-161.
[3] 王牧, 曾夏茂, 苗霞, 魏浩光, 周仕明, 冯岸超. 三维石墨烯-吡咯气凝胶/环氧树脂复合材料的制备及其性能[J]. 材料工程, 2022, 50(1): 117-124.
[4] 张代军, 陈俊, 包建文, 钟翔屿, 陈祥宝. 树脂基体中热塑性树脂含量对碳纤维环氧复合材料Ⅱ型层间断裂韧性的影响[J]. 材料工程, 2021, 49(6): 178-184.
[5] 陈宇, 张代军, 李军, 温嘉轩, 陈祥宝. 三维结构石墨烯气凝胶/环氧树脂复合材料的制备和电磁屏蔽性能[J]. 材料工程, 2021, 49(5): 82-88.
[6] 周松, 贾耀雄, 许良, 边钰博, 涂宜鸣. 湿热环境对T800碳纤维/环氧树脂基复合材料力学性能的影响[J]. 材料工程, 2021, 49(10): 138-143.
[7] 王钰登, 郑亚萍, 宋珊, 姚东东. SiO2无溶剂纳米流体粒径和含量对环氧树脂力学和热性能的影响[J]. 材料工程, 2021, 49(10): 156-163.
[8] 张成林, 董抒华, 李丽君, 田龙雨, 谭洪生. E-玻纤/环氧树脂预浸料固化动力学及其动态热力学性能[J]. 材料工程, 2020, 48(9): 152-157.
[9] 李翰, 樊茂华, 王纳斯丹, 范保鑫, 冯振宇. 碳纤维环氧树脂复合材料热响应预报方法[J]. 材料工程, 2020, 48(5): 49-55.
[10] 侯桂香, 谢建强, 姚少巍, 张云杰, 蓝文. 生物基没食子酸环氧树脂/纳米氧化锌抗菌涂层的制备与性能[J]. 材料工程, 2020, 48(3): 34-39.
[11] 郑凌祺, 李刚, 杨小平, 李强, 石凌飞. 环糊精微球改性环氧树脂的制备及其碳纤维复合材料的X射线穿透性研究[J]. 材料工程, 2020, 48(11): 170-176.
[12] 顾善群, 刘燕峰, 李军, 陈祥宝, 张代军, 邹齐, 肖锋. 碳纤维/环氧树脂复合材料高速冲击性能[J]. 材料工程, 2019, 47(8): 110-117.
[13] 陈珂龙, 张桐, 崔溢, 王智勇. 超支化聚合物(HBPs)改性环氧树脂的研究进展[J]. 材料工程, 2019, 47(7): 11-18.
[14] 黄骏逸, 方向, 李裕春, 刘强, 武双章, 宋佳星. PTFE/Al/MoO3复合材料的力学和反应性能[J]. 材料工程, 2019, 47(7): 92-98.
[15] 李曦. 二维和零维纳米材料协同增强的高性能纳米复合材料[J]. 材料工程, 2019, 47(4): 47-55.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn