Please wait a minute...
 
2222材料工程  2019, Vol. 47 Issue (11): 92-99    DOI: 10.11868/j.issn.1001-4381.2018.001293
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
功能化纳米SiO2改性环氧树脂复合材料及其摩擦磨损行为与机制
田晋1, 高立1,*(), 蔡滨2, 齐泽昊1, 谭业发1
1 陆军工程大学 野战工程学院, 南京 210007
2 陆军南京军代局, 南京 210024
Tribological behavior and wear mechanism of modified nano-SiO2 reinforced epoxy composites
Jin TIAN1, Li GAO1,*(), Bin CAI2, Ze-hao QI1, Ye-fa TAN1
1 Institute of Field Engineering, Army Engineering University of PLA, Nanjing 210007, China
2 Army Nanjing Military Agency, Nanjing 210024, China
全文: PDF(4786 KB)   HTML ( 7 )  
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 

运用共价官能化技术,实现纳米SiO2表面接枝3-氨丙基三乙氧基硅烷(APTES)改性(T-SiO2),并制备功能化纳米SiO2改性环氧树脂复合材料(T-SiO2/EP),分析改性后纳米SiO2表面官能团和化学元素的变化规律,测试T-SiO2/EP的主要力学性能,研究其在干摩擦条件下的摩擦磨损行为与机制。结果表明:功能化纳米SiO2的引入,有效改善了环氧树脂的力学与摩擦学性能,且当功能化纳米SiO2含量为2%时(质量分数,下同),环氧复合材料(2% T-SiO2/EP)的显微硬度和断裂韧度均达到最大值(70.2HD和1.02MPa·m1/2),并具有优异的减摩耐磨性能。干摩擦条件下,2% T-SiO2/EP复合材料的摩擦因数和磨损失重分别为0.49和1.7mg,较纯环氧树脂分别降低了31.9%和34.6%,较未改性纳米SiO2增强的环氧树脂复合材料(U-SiO2/EP)分别降低了14%和10.5%,并对相应的磨损机理进行了分析。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
田晋
高立
蔡滨
齐泽昊
谭业发
关键词 环氧树脂(EP)纳米SiO2复合材料表面改性摩擦磨损    
Abstract

Nano-SiO2 surface grafted APTES (T-SiO2) was realized by covalent functionalization technology, and functionalized nano-SiO2 modified epoxy resin composite (T-SiO2/EP) was prepared. The surface functional groups and chemical elements of the functionalized nano-SiO2were analyzed and the mechanical and tribological properties of the T-SiO2/EP were tested. The results show that the mechanical and tribological properties of the epoxy resin are effectively improved due to the introduction of functionalized nano-SiO2. When the content of functionalized nano-SiO2 is 2%(mass fraction, same as below), the microhardness and fracture toughness of the composites (2%T-SiO2/EP) can reach the maximum, which are 70.2HD and 1.02MPa·m1/2 respectively, moreover, in dry friction condition, the friction coefficient and the wear loss reach the minimum, which are 0.49mg and 1.7mg respectively. Compared with pure epoxy resin, they are reduced by 31.9% and 34.6%, and compared with 2% unmodified nano-SiO2 reinforced epoxy resin composite, they are reduced by 14% and 10.5%, and the corresponding wear mechanism is analyzed.

Key wordsepoxy resin    nano-SiO2    composites    surface modification    friction and wear
收稿日期: 2018-11-06      出版日期: 2019-11-21
中图分类号:  TB332  
通讯作者: 高立     E-mail: gaoli5429@163.com
作者简介: 高立(1984-), 女, 讲师, 硕士, 研究方向为高分子复合材料, 联系地址:江苏省南京市秦淮区海福巷1号陆军工程大学野战工程学院(210007), E-mail:gaoli5429@163.com
引用本文:   
田晋, 高立, 蔡滨, 齐泽昊, 谭业发. 功能化纳米SiO2改性环氧树脂复合材料及其摩擦磨损行为与机制[J]. 材料工程, 2019, 47(11): 92-99.
Jin TIAN, Li GAO, Bin CAI, Ze-hao QI, Ye-fa TAN. Tribological behavior and wear mechanism of modified nano-SiO2 reinforced epoxy composites. Journal of Materials Engineering, 2019, 47(11): 92-99.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.001293      或      http://jme.biam.ac.cn/CN/Y2019/V47/I11/92
Fig.1  纳米SiO2的红外光谱图
Fig.2  纳米SiO2的EDS图谱
(a)未改性纳米SiO2; (b)改性纳米SiO2
Materials Shore hardness(HD)
EP 60.4±1.20
1% U-SiO2/EP 62.0±2.10
2% U-SiO2/EP 62.5±1.60
3% U-SiO2/EP 61.0±0.80
1% T-SiO2/EP 65.0±0.80
2% T-SiO2/EP 70.2±0.60
3% T-SiO2/EP 68.0±2.10
Table 1  EP, U-SiO2/EP和T-SiO2/EP的邵氏显微硬度
Fig.3  EP, U-SiO2/EP和T-SiO2/EP的断裂韧度
Fig.4  EP, U-SiO2/EP和T-SiO2/EP复合材料断面SEM图
(a)EP; (b)2%U-SiO2/EP; (c)2%T-SiO2/EP
Fig.5  复合材料的摩擦因数随时间的变化曲线
(a)U-SiO2/EP; (b)T-SiO2/EP
Fig.6  复合材料摩擦因数和磨损失重变化规律
Fig.7  EP磨损表面形貌
Fig.8  2%U-SiO2/EP复合材料的磨损表面形貌
Fig.9  复合材料断裂韧度与磨损失重的关系
Fig.10  2%T-SiO2/EP复合材料的磨损表面形貌
Fig.11  复合材料邵氏硬度与磨损失重的关系
Fig.12  1%T-SiO2/EP复合材料的磨损表面形貌
Fig.13  3%T-SiO2/EP复合材料磨损表面形貌图
1 MASSINGILLG L , SHEIHP S , WHITESIDER C , et al. Fundamental studies of epoxy resins for can and coil coatings II:flexibility and adhesion of epoxy resins[J]. Journal of Coatings Technology, 1990, 62, 31- 39.
2 LIN L Y , KIM D E , KIM W K , et al. Friction and wear characteristics of multi-layer graphene films investigated by atomic force microscopy[J]. Surface & Coatings Technology, 2011, 205 (20): 4864- 4869.
3 GOLRU S S , ATTAR M M , RAMEZANZADEH B . Studying the influence of nano-Al2O3, particles on the corrosion performance and hydrolytic degradation resistance of an epoxy/polyamide coating on AA-1050[J]. Progress in Organic Coatings, 2014, 77 (9): 1391- 1399.
doi: 10.1016/j.porgcoat.2014.04.017
4 AZMAN N Z , SIDDIQUI S A , LOW I M . Characterisation of micro-sized and nano-sized tungsten oxide-epoxy composites for radiation shielding of diagnostic X-rays[J]. Mater Sci Eng C Mater Biol Appl, 2013, 33 (8): 4952- 4957.
doi: 10.1016/j.msec.2013.08.023
5 VIJAYAN P P , PIONTECK J , HUCZKO A , et al. Liquid rubber and silicon carbide nanofiber modified epoxy nanocom-posites:volume shrinkage, cure kinetics and properties[J]. Composites Science & Technology, 2014, 102 (4): 65- 73.
6 CHANDRASEKARAN S , SEIDEL C , SCHULTE K . Prepar-ation and characterization of graphite nano-platelet (GNP)/epoxy nano-composite:mechanical, electrical and thermal properties[J]. European Polymer Journal, 2013, 49 (12): 3878- 3888.
doi: 10.1016/j.eurpolymj.2013.10.008
7 KNOPP D , TANG D , NIESSNER R . Review:bioanalytical applications of biomolecule-functionalized nanometer-sized doped silica particles[J]. Analytica Chimica Acta, 2009, 647 (1): 14- 30.
doi: 10.1016/j.aca.2009.05.037
8 SHIN Y , LEE D , LEE K , et al. Surface properties of silica nanoparticles modified with polymers for polymer nanocomposite applications[J]. Journal of Industrial & Engineering Chemistry, 2008, 14 (4): 515- 519.
9 LEE S I , KIM D B , SIN J H , et al. Polyurethane/silica composites, prepared via in-situ polymerization in the presence of chemically modified silicas[J]. Biochimica et Biophysica Acta, 2007, 1862 (2): 274- 283.
10 TZETZIS D , MANSOUR G , TSIAFIS I , et al. Nanoindent-ation measurements of fumed silica epoxy reinforced nanocom-posites[J]. Journal of Reinforced Plastics & Composites, 2013, 32 (3): 160- 173.
11 SIENGCHIN S . Impact, thermal and mechanical properties of high density polyethylene/flax/SiO2 composites:effect of flax reinforcing structures[J]. Journal of Reinforced Plastics & Composites, 2012, 31 (14): 959- 966.
12 WANG X , WANG L , SU Q , et al. Use of unmodified SiO2, as nanofiller to improve mechanical properties of polymer-based nanocomposites[J]. Composites Science & Technology, 2013, 89 (1): 52- 60.
13 SINGH S K , KUMAR A , JAIN A . Improving tensile and flexural properties of SiO2-epoxy polymer nanocomposite[J]. Materials Today, 2018, 5 (2): 6339- 6344.
14 ZHANG H , TANG L C , ZHANG Z , et al. Fracture behaviours of in situ silica nanoparticle-filled epoxy at different temperatures[J]. Polymer, 2008, 49 (17): 3816- 3825.
doi: 10.1016/j.polymer.2008.06.040
15 QI Z , TAN Y , WANG H , et al. Effects of noncovalently functionalized multiwalled carbon nanotube with hyperbranched polyesters on mechanical properties of epoxy composites[J]. Polym Test, 2017, 64, 38- 47.
doi: 10.1016/j.polymertesting.2017.09.031
16 SPANGE S . Silica surface modification by cationic polymeri-zation and carbenium intermediates[J]. Progress in Polymer Science, 2000, 25 (6): 781- 849.
doi: 10.1016/S0079-6700(00)00014-9
17 SBIRRAZZUOLI N , MITITELU-MIJA A , VINCENT L , et al. Isoconversional kinetic analysis of stoichiometric and off-stoichiometric epoxy-amine cures[J]. Thermochimica Acta, 2006, 447 (2): 167- 177.
doi: 10.1016/j.tca.2006.06.005
18 KINLOCH A J , WILLIAMS J G . Crack blunting mechanisms in polymers[J]. Journal of Materials Science, 1980, 15 (4): 987- 996.
doi: 10.1007/BF00552112
19 胡海霞, 于思荣, 王玉辉, 等. 环氧树脂在干摩擦过程中的表面化学效应研究[J]. 摩擦学学报, 2007, 27 (3): 241- 245.
doi: 10.3321/j.issn:1004-0595.2007.03.010
19 HU H X , YU S R , WANG Y H , et al. Surface chemical effects of epoxy resin in dry friction[J]. Journal of Tribology, 2007, 27 (3): 241- 245.
doi: 10.3321/j.issn:1004-0595.2007.03.010
20 邵鑫, 田军, 刘维民, 等. 纳米SiO2对聚醚砜酮复合材料摩擦学性能的影响[J]. 材料工程, 2002, (2): 38- 42.
doi: 10.3969/j.issn.1001-4381.2002.02.011
20 SHAO X , TIAN J , LIU W M , et al. Effect of nano-SiO2 on tribological properties of polyethersulfone ketone composites[J]. Journal of Materials Engineering, 2002, (2): 38- 42.
doi: 10.3969/j.issn.1001-4381.2002.02.011
21 雷毅, 郭建良, 张雁翔. 填充纳米SiO2对超高分子量聚乙烯复合材料摩擦磨损性能的影响[J]. 润滑与密封, 2006, (12): 41- 43.
doi: 10.3969/j.issn.0254-0150.2006.12.013
21 LEI Y , GUO J L , ZHANG Y X . Effect of nano-SiO2 filling on friction and wear properties of ultra high molecular weight polyethylene composites[J]. Lubrication & Sealing, 2006, (12): 41- 43.
doi: 10.3969/j.issn.0254-0150.2006.12.013
[1] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[2] 孔国强, 安振河, 魏化震, 李莹, 邵蒙, 于秋兵, 纪校君, 李居影, 王康. 碳纤维丝束结构对碳纤维/酚醛复合材料烧蚀性能的影响[J]. 材料工程, 2022, 50(9): 113-119.
[3] 米玉洁, 宋明明, 张存瑞, 张贵恩, 王月祥, 常志敏. 羰基铁室温硫化硅橡胶复合材料的吸波性能[J]. 材料工程, 2022, 50(9): 120-126.
[4] 邢宇, 张代军, 王成博, 倪洪江, 李军, 陈祥宝. PEEK复合材料用碳纤维上浆剂研究进展[J]. 材料工程, 2022, 50(8): 70-81.
[5] 周银, 乔畅, 邹家栋, 郭洪锍, 王树奇. 多层石墨烯对钛合金摩擦学性能的影响[J]. 材料工程, 2022, 50(8): 107-114.
[6] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[7] 倪洪江, 邢宇, 戴霄翔, 李军, 张代军, 陈祥宝. 航空发动机用聚酰亚胺树脂基复合材料固化工艺及热稳定性能[J]. 材料工程, 2022, 50(7): 102-109.
[8] 吕双祺, 黄佳, 孙燕涛, 付尧明, 杨晓光, 石多奇. 莫来石纤维增强SiO2气凝胶复合材料压缩回弹性能实验与建模研究[J]. 材料工程, 2022, 50(7): 119-127.
[9] 杨智勇, 臧家俊, 方丹琳, 李翔, 李志强, 李卫京. 城轨列车制动盘SiCp/A356复合材料热疲劳裂纹扩展机理[J]. 材料工程, 2022, 50(7): 165-175.
[10] 彭斌意, 刘洋, 郑晓董, 李治国, 李国平, 胡建波, 王永刚. 激光选区熔化颗粒增强钛基复合材料的抗压性能[J]. 材料工程, 2022, 50(6): 36-48.
[11] 李军, 刘燕峰, 倪洪江, 张代军, 陈祥宝. 航空发动机用树脂基复合材料应用进展与发展趋势[J]. 材料工程, 2022, 50(6): 49-60.
[12] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[13] 于永涛, 刘元军. 原位聚合法制备铁氧体/聚苯胺吸波复合材料的研究进展[J]. 材料工程, 2022, 50(5): 90-99.
[14] 程子敬, 王凯峰, 张连洪. 基于微观尺度X射线断层扫描技术的短切碳纤维SMC复合材料失效分析[J]. 材料工程, 2022, 50(5): 130-138.
[15] 杜宗波, 时双强, 陈宇滨, 褚海荣, 杨程. 介电型石墨烯吸波复合材料研究进展[J]. 材料工程, 2022, 50(4): 74-84.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn