Abstract:Continuous fiber reinforced high-performance thermoplastic composites have gradually attracted the attention of the composite industries due to their unique advantages such as light mass, high strength, good impact resistance, short molding cycle, secondary molding and waste recycling. The application status of continuous fiber reinforced high-performance thermoplastic composites was introduced in this paper starting from several kinds of high-performance thermoplastic resins. Moreover, the forming and properties of continuous fiber reinforced high-performance thermoplastic composites were also summarized in detail. At last, the future development trend of domestic continuous fiber reinforced high-performance thermoplastic composites was summarized from three aspects including application demand, molding process and material properties, in order to promote the structural design and application of continuous fiber reinforced high-performance thermoplastic composites.
[1] MUZZY J D, KAYS A O. Thermoplastic vs thermosetting structural composites[J]. Polymer Composites, 1984, 5(3):169-172.
[2] HOGGATT J T. Thermoplastic resin composites[J]. Technology in Transition, 1975:606-617.
[3] BELBIN G R, BREWSTER I, COGSWELL F N, et al. Carbon fibre reinforced PEEK:a thermoplastic composite for aerospace applications[C]//SAMPE Conference. Italy Stresa:SAMPE, 1982:1.
[4] CHRISTENSEN S, CLARK L P. Thermoplastic composites for structural applications-an emerging technology[C]//International SAMPE Symposium. Los Angeles:SAMPE, 1986:1747-1755.
[5] 方立. 连续纤维增强热塑性复合材料制备及其性能的研究[D]. 上海:华东理工大学, 2012. FANG L. Study on preparation and characters of continuous fiber reinforced thermoplastic composites[D]. Shanghai:East China University of Science and Technology, 2012.
[6] 刘增田. 特种工程塑料的性能及应用[J]. 聊城大学学报(自然科学版), 2006(1):81-83. LIU Z T. Performance and application of special engineering plastics[J]. Journal of Liaocheng University(Nat Sci),2006(1):81-83.
[7] 胡婕. PEEK及碳纤维增强PEEK的性能研究[D]. 上海:东华大学, 2010. HU J. The research in performance of PEEK and carbon fiber reinforced PEEK[D]. Shanghai:Donghua University, 2010.
[8] 陈连周,蹇锡高. 新型多芳环取代杂萘联苯型聚芳醚酮的合成[J]. 化学通报, 1998(12):38-39. CHEN L Z, JIAN X G. Synthesis of a novel poly(aryl ether ketones) containing polyaryl phthalazinones moieties[J]. Chemistry, 1998(12):38-39.
[9] 蹇锡高,陈平,廖功雄,等. 含二氮杂荼酮结构新型聚芳醚系列高性能聚合物的合成与性能[J]. 高分子学报, 2003, 1(4):469-475. JIAN X G, CHEN P, LIAO G X, et al. Synthesis and properties of novel high performance series poly(aromatic ethers) polymers containing polyarylazinone moieties[J]. Acta Polymerica Sinica, 2003, 1(4):469-475.
[10] BAI J M, LEACH D, CEASE S, et al. High performance thermoplastic polymers and composites[C]//International SAMPE Symposium. Corina:SAMPE, 2005:1391-1405.
[11] HAMADA H, COPPOLA J C, HULL D, et al. Comparison of energy absorption of carbon/epoxy and carbon/PEEK composite tubes[J]. Composites, 1992, 23(4):245-252.
[12] TEXIER A, DAVIS R M, LYON K R, et al. Fabrication of PEEK/carbon fibre composites by aqueous suspension prepregging[J]. Polymer, 1993, 34(4):896-906.
[13] KOBAYASHI S, TANAKA A. Resin impregnation behavior in processing of unidirectional carbon fiber reinforced thermoplastic composites[J]. Advanced Composite Materials, 2012, 21(1):91-102.
[14] VIEILLE B, CASADO V M, BOUVET C. About the impact behavior of woven-ply carbon fiber-reinforced thermoplastic-and thermosetting-composites:a comparative study[J]. Composite Structures, 2013, 101:9-21.
[15] 叶鼎铨. 国外纤维增强热塑性塑料发展概况[J].国外塑料, 2012(5):34-40. YE D Q. Developments of fiber reinforced thermoplastics outside China[J]. World Plastics, 2012(5):34-40.
[16] 张婷. 高性能热塑性复合材料在大型客机结构件上的应用[J]. 航空制造技术, 2013(15):32-35. ZHANG T. Applications of high performance thermoplastic composites for commercial airplane structural component[J]. Aeronautical Manufacturing Technology, 2013(15):32-35.
[17] 王兴刚,于洋,李树茂,等. 先进热塑性树脂基复合材料在航天航空上的应用[J]. 纤维复合材料, 2011(2):44-47. WANG X G, YU Y, LI S M, et al. The research on fiber reinforced thermoplastic composite[J]. Fiber Composites, 2011(2):44-47.
[18] 张增焕,刘红兵. 航空领域热塑性纤维复合材料焊接技术发展研究[J]. 航空制造技术, 2015(14):72-75. ZHANG Z H, LIU H B. Research on the development of welding technology of fiber reinforced thermo plastics in the aviation field[J]. Aeronautical Manufacturing Technology, 2015(14):72-75.
[19] BARNES J A, COGSWELL F N. Transverse flow processes in continuous fibre-reinforced thermoplastic composites[J]. Composites, 1989, 20(1):38-42.
[20] SALEK M H. Effect of processing parameters on the mechanical properties of carbon/PEKK thermoplastic composite materials[D]. Canada:Concordia University, 2005.
[21] 张晓明,刘雄亚. 纤维增强热塑性复合材料及其应用[M]. 北京:化学工业出版社, 2007. ZHANG X M, LIU X Y. Fiber reinforced thermoplastic composites and their applications[M]. Beijing:Chemical Industry Press, 2007.
[22] COMER A J, RAY D, OBANDE W O, et al. Mechanical characterisation of carbon fibre-PEEK manufactured by laser-assisted automated-tape-placement and autoclave[J]. Composites Part A, 2015, 69:10-20.
[23] LEESER D, LEACH D. Compressive properties of thermoplastic matrix composites[C]//International SAMPE Symposium and Exhibition. Reno:SAMPE. 1989:1464-1473.
[24] LEE R J. Compression strength of aligned carbon fibre-reinforced thermoplastic laminates[J]. Composites, 1987, 18(1):35-39.
[25] CARLILE D R, LEACH D C, MOORE D R, et al. Mechanical properties of the carbon fiber/PEEK composite APC-2/AS-4 for structural applications[C]//Advances in thermoplastic matrix composite materials. West Conshohocken:ASTM International, 1989:199-212.
[26] NAGUMO T, NAKAMURA H, YOSHIDA Y, et al. Evaluation of PEEK matrix composite[J]. Society for the Advancement of Material and Process Engineering, 1987:396-407.
[27] LEACH D C, COGSWELL F N, NIELD E. High temperature performance of thermoplastic aromatic polymer composites[J]. Materials Sciences for the Future, 1986:434-448.
[28] JONES D P, LEACH D C, MOORE D R. Mechanical properties of poly (ether-ether-ketone) for engineering applications[J]. Polymer, 1985, 26(9):1385-1393.
[29] DAVIES M, LEACH D C, MOORE D R, et al. Mechanical performance of semi-crystalline, thermoplastic matrix composites for elevated temperature service[C]//Sixth International Conference on Composite Materials and Second European Conference on Composite Materials (ICCM & ECCM). London:Elsevier, 1987:1.
[30] HARTNESS J T. An evaluation of polyetheretherketone matrix composites fabricated from unidirectional prepreg tape[J]. SAMPE Journal, 1984, 20:26-31.
[31] EVANS D, MORGAN J T, ROBERTSON S J, et al. The physical properties of carbon fibre reinforced PEEK composites at low temperatures[C]//Advances in Cryogenic Engineering (Materials). New York:Plenum Press, 1988:34.
[32] COGSWELL F N. Thermoplastic aromatic polymer composites:a study of the structure, processing and properties of carbon fibre reinforced polyetheretherketone and related materials[M]. Oxford:Elsevier, 1993.
[33] LI T, HEINZER M J, FRANCIS L F, et al. Engineering superior toughness in commercially viable block copolymer modified epoxy resin[J]. Journal of Polymer Science Part B, 2016, 54(2):189-204.
[34] XU M, YANG X, ZHAO R, et al. Copolymerizing behavior and processability of benzoxazine/epoxy systems and their applications for glass fiber composite laminates[J]. Journal of Applied Polymer Science, 2013, 128(2):1176-1184.
[35] KIM K, KIM D, KIM B, et al. Cure behaviors and mechanical properties of carbon fiber-reinforced nylon6/epoxy blended matrix composites[J]. Composites Part B, 2017, 112:15-21.
[36] LI N, ZONG L, WU Z, et al. Compatibilization effect of aminated poly(phthalazinone ether ketone)s in carbon fiber-reinforced copoly(phthalazinone ether sulfone)s composites[J]. Polymer Composites, 2018,39(11):4139-4147.
[37] LI N, HU Z, HUANG Y. Preparation and characterization of nanocomposites of poly(p-phenylene benzobisoxazole) with aminofunctionalized graphene[J]. Polymer Composites, 2018, 39(8):2969-2976.
[38] RAHMANIAN S, SURAYA A R, SHAZED M A, et al. Mechanical characterization of epoxy composite with multiscale reinforcements:carbon nanotubes and short carbon fibers[J]. Materials & Design, 2014, 60:34-40.
[39] GOJNY F H, WICHMANN M H G, FIEDLER B, et al. Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites-a comparative study[J]. Composites Science and Technology, 2005, 65(15):2300-2313.
[40] DENG S, YE L, FRIEDRICH K. Fracture behaviours of epoxy nanocomposites with nano-silica at low and elevated temperatures[J]. Journal of Materials Science,2007,42(8):2766-2774.
[41] ZHU J, WEI S, RYU J, et al. In situ stabilized carbon nanofiber (CNF) reinforced epoxy nanocomposites[J]. Journal of Materials Chemistry, 2010, 20(23):4937-4948.
[42] XU Y, VAN HOA S. Mechanical properties of carbon fiber reinforced epoxy/clay nanocomposites[J]. Composites Science and Technology, 2008, 68(3):854-861.
[43] ISLAM M E, MAHDI T H, HOSUR M V, et al. Characterization of carbon fiber reinforced epoxy composites modified with nanoclay and carbon nanotubes[J]. Procedia Engineering, 2015, 105:821-828.
[44] WANG H, XIE G, FANG M, et al. Mechanical reinforcement of graphene/poly(vinyl chloride) composites prepared by combining the in-situ suspension polymerization and melt-mixing methods[J]. Composites Part B, 2017, 113:278-284.
[45] SHARMA S K, NAYAK S K. Surface modified clay/polypropylene (PP) nanocomposites:effect on physico-mechanical, thermal and morphological properties[J]. Polymer Degradation and Stability, 2009, 94(1):132-138.
[46] VLASVELD D P, DAUD W, BERSEE H E, et al. Continuous fibre composites with a nanocomposite matrix:improvement of flexural and compressive strength at elevated temperatures[J]. Composites Part A, 2007, 38(3):730-738.
[47] DÍEZ-PASCUAL A M, NAFFAKH M. Inorganic nanoparticle-modified poly (phenylene sulphide)/carbon fiber laminates:thermomechanical behaviour[J].Materials,2013,6(8):3171-3193.
[48] RAO V, DRZAL L T. The dependence of interfacial shear strength on matrix and interphase properties[J]. Polymer Composites, 1991, 12(1):48-56.
[49] LOOS A C, SPRINGER G S. Effects of thermal spiking on graphite-epoxy composites[J]. Journal of Composite Materials, 1979, 13(1):17-34.
[50] MORGAN R J, O'NEAL J E, FANTER D L. The effect of moisture on the physical and mechanical integrity of epoxies[J]. Journal of Materials Science, 1980, 15(3):751-764.
[51] MCKAGUE JR E L, HALKIAS J E, REYNOLDS J D. Moisture in composites:the effect of supersonic service on diffusion[J]. Journal of Composite Materials, 1975, 9(1):2-9.
[52] SELZER R, FRIEDRICH K. Mechanical properties and failure behaviour of carbon fibre-reinforced polymer composites under the influence of moisture[J]. Composites Part A, 1997, 28(6):595-604.
[53] ZHENG Q, MORGAN R J. Synergistic thermal-moisture damage mechanisms of epoxies and their carbon fiber composites[J]. Journal of Composite Materials, 1993, 27(15):1465-1478.
[54] JONES F R, MULHERON M, BAILEY J E. Generation of thermal strains in GRP[J]. Journal of Materials Science, 1983, 18(5):1522-1532.
[55] BURCHAM L J, VANLANDINGHAM M R, EDULJEE R F, et al. Moisture effects on the behavior of graphite/polyimide composites[J]. Polymer Composites, 1996, 17(5):682-690.
[56] BAO L, YEE A F, LEE C Y. Moisture absorption and hygrothermal aging in a bismaleimide resin[J]. Polymer, 2001, 42(17):7327-7333.
[57] BAO L, YEE A F. Effect of temperature on moisture absorption in a bismaleimide resin and its carbon fiber composites[J]. Polymer, 2002, 43(14):3987-3997.
[58] BAO L, YEE A F. Moisture diffusion and hygrothermal aging in bismaleimide matrix carbon fiber composites-part Ⅰ:uni-weave composites[J]. Composites Science and Technology, 2002, 62(16):2099-2110.
[59] BOTELHO E C, PARDINI L C, REZENDE M C. Hygrothermal effects on the shear properties of carbon fiber/epoxy composites[J].Journal of Materials Science,2006,41(21):7111-7118.
[60] KAELBLE D H, DYNES P J, CRANE L W, et al. Interfacial mechanisms of moisture degradation in graphite-epoxy composites[J]. The Journal of Adhesion, 1975, 7(1):25-54.
[61] SUN P, ZHAO Y, LUO Y, et al. Effect of temperature and cyclic hygrothermal aging on the interlaminar shear strength of carbon fiber/bismaleimide (BMI) composite[J]. Materials & Design, 2011, 32(8):4341-4347.
[62] ZHAO Y, LUO Y, DUAN Y, et al. The effect of cyclic hygrothermal environment on interlaminar shear strength (ILSS) of CCF300/BMI composite[J]. International Journal of Modern Physics B, 2010, 24(15/16):2712-2717.