Please wait a minute...
材料工程  2020, Vol. 48 Issue (8): 169-176    DOI: 10.11868/j.issn.1001-4381.2019.000286
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
陈子木1,2,3, 胡正伟1,2,3, 王倩妮1,2,3, 史亦韦1,2,3
1. 中国航发北京航空材料研究院, 北京 100095;
2. 航空材料检测与评价北京市重点实验室, 北京 100095;
3. 中国航空发动机集团材料检测与评价重点实验室, 北京 100095
Error and limit determination for dimensional measurements of thin-walled structures with industrial computed tomography
CHEN Zi-mu1,2,3, HU Zheng-wei1,2,3, WANG Qian-ni1,2,3, SHI Yi-wei1,2,3
1. AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China;
2. Beijing Key Laboratory of Aeronautical Materials Testing and Evaluation, Beijing 100095, China;
3. Key Laboratory of Aeronautical Materials Testing and Evaluation, Aero Engine Corporation of China, Beijing 100095, China
全文: PDF(2021 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 针对增材制造复杂构件中薄壁结构的高精度尺寸测量需求,推导了薄壁结构经工业CT系统成像后的图像灰度分布函数及边界位置特征,并对比分析了半高宽法和最大灰度梯度法的适用范围,计算了基于CT成像的尺寸测量极限。通过对校准尺寸的薄壁结构进行工业CT扫描成像实验,测量不同厚度薄壁结构的壁厚尺寸。结果表明:对于尺寸大于CT成像系统可测壁厚尺寸极限的薄壁结构,半高宽法相比最大灰度梯度法测量误差更小。薄壁结构尺寸测量极限可通过实验测量CT成像系统的边扩散函数后利用计算模拟的方法获得。
E-mail Alert
关键词 薄壁结构工业CT尺寸测量测量极限    
Abstract:Due to the high-accuracy requirement of dimensional measurements for thin-walled structures of additive manufacturing products, the grayscale distribution of the industrial CT image and the location of the structural boundaries in the image space were derived. In addition, the validity of the half-height-width method and the maximum gradient method was compared and analyzed, and the limit of the dimensional measurement based on CT imaging was calculated. The thin-walled structures with different thicknesses were calibrated, and measured by industrial CT scanning and imaging experiment. The results show that the half-height-width method generates a smaller error compared with the maximum gradient method, when the thickness of the thin-walled structures is larger than the measurement limit of the CT system. Finally, the measurement limit can be obtained by numerical simulations based on the edge spread function with experimental measurements.
Key wordsthin-walled structure    industrial computed tomography    dimensional measurement    mea-surement limit
收稿日期: 2019-03-27      出版日期: 2020-08-15
中图分类号:  TG115.28  
通讯作者: 陈子木(1985-),男,工程师,博士,研究方向为工业CT检测,联系地址:北京市81信箱6分箱(100095),     E-mail:
陈子木, 胡正伟, 王倩妮, 史亦韦. 薄壁结构工业CT尺寸测量误差与极限[J]. 材料工程, 2020, 48(8): 169-176.
CHEN Zi-mu, HU Zheng-wei, WANG Qian-ni, SHI Yi-wei. Error and limit determination for dimensional measurements of thin-walled structures with industrial computed tomography. Journal of Materials Engineering, 2020, 48(8): 169-176.
链接本文:      或
[1] 凌松. 增材制造技术及其制品的无损检测进展[J]. 无损检测,2016,38(6):60-64. LING S. Additive manufacture technique and related NDT for its products[J]. Nondestructive Testing, 2016, 38(6):60-64.
[2] 杨平华,高祥熙,梁菁,等. 金属增材制造技术发展动向及无损检测研究进展[J]. 材料工程,2017,45(9):13-21. YANG P H, GAO X X, LIANG J, et al. Development tread and NDT progress of metal additive manufacture technique[J]. Journal of Materials Engineering, 2017, 45(9):13-21.
[3] 张学军,唐思熠,肇恒跃,等. 3D打印技术研究现状和关键技术[J]. 材料工程,2016,44(2):122-128. ZHANG X J, TANG S Y, ZHAO H Y, et al. Research status and key technologies of 3D printing[J]. Journal of Materials Engineering, 2016, 44(2):122-128.
[4] THOMPSON A, MASKERY I, LEACH R K. X-ray computed tomography for additive manufacturing:a review[J]. Measurement Science & Technology, 2016, 27(7):072001.
[5] NTIVEROS S, YAGUE J A, JIMENEZ R, et al. Computer tomography 3D edge detection comparative for metrology applications[J]. Procedia Engineering, 2013, 63:710-719.
[6] MULLER P, CANTATORE A, ANDREASEN J L, et al. Computed tomography as a tool for tolerance verification of industrial parts[J]. Procedia CIRP, 2013, 10:125-132.
[7] MAIRE E, WITHERS P J. Quantitative X-ray tomography[J]. International Materials Reviews, 2017, 59(1):1-43.
[8] DE CHIFFRE L, CARMIGNATO S, KRUTH J P, et al. Industrial applications of computed tomography[J]. CIRP Annals-Manufacturing Technology, 2014, 63(2):655-677.
[9] ALOISI V, CARMIGNATO S. Influence of surface roughness on X-ray computed tomography dimensional measurements of additive manufactured parts[J]. Case Studies in Nondestructive Testing and Evaluation, 2016, 6:104-110.
[10] TAN Y, KIEKENS K, WELKENHUYZEN F, et al. Simulation-aided investigation of beam hardening induced errors in CT dimensional metrology[J]. Measurement Science & Technology, 2014, 25(6):064014.
[11] ANTONDU P, STEPHAN G R, JOHAN E, et al. Application of micro CT to the non-destructive testing of an additive manufactured titanium component[J]. Case Studies in Nondestructive Testing & Evaluation, 2015, 4:1-7.
[12] TOWNSEND A, PAGANI L, SCOTT P, et al. Areal surface texture data extraction from X-ray computed tomography reconstructions of metal additively manufactured parts[J]. Precision Engineering, 2017, 48:254-264.
[13] DEWULF W, KIEKENS K, TAN Y, et al. Uncertainty determination and quantification for dimensional measurements with industrial computed tomography[J]. CIRP Annals-Manufacturing Technology, 2013, 62(1):535-538.
[14] VAN BAEL S, KERCKHOFS G, MOESEN M, et al. Micro-CT-based improvement of geometrical and mechanical controllability of selective laser melted Ti6Al4V porous structures[J]. Materials Science and Engineering:A,2011,528(24):7423-7431.
[15] 王义旭,施玉书,高思田,等. 工业CT探测尺寸误差的校准及误差分析[J]. 计量学报,2014,35(3):216-220. WANG Y X, SHI Y S, GAO S T, et al. Calibration and analysis for probing size error of industrial CT[J]. Acta Metrologica Sinica, 2014, 35(3):216-220.
[1] 傅洋, 曹玉玲, 王自明. 工业CT技术在铸造技术中的应用[J]. 材料工程, 1996, 0(10): 11-13.
Full text



版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持