Please wait a minute...
 
2222材料工程  2020, Vol. 48 Issue (3): 34-39    DOI: 10.11868/j.issn.1001-4381.2019.000299
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
生物基没食子酸环氧树脂/纳米氧化锌抗菌涂层的制备与性能
侯桂香(), 谢建强, 姚少巍, 张云杰, 蓝文
华北理工大学 材料科学与工程学院 河北省无机非金属材料重点实验室, 河北 唐山 063210
Preparation and properties of bio-based gallic epoxy resin/nano-ZnO antibacterial coating
Gui-xiang HOU(), Jian-qiang XIE, Shao-wei YAO, Yun-jie ZHANG, Wen LAN
Hebei Provincial Key Laboratory of Inorganic Nonmetallic Materials, College of Materials Science and Engineering, North China University of Science and Technology, Tangshan 063210, Hebei, China
全文: PDF(2137 KB)   HTML ( 13 )  
输出: BibTeX | EndNote (RIS)      
摘要 

以没食子酸为主要原料制备生物基没食子酸环氧树脂(GAER),将硅烷偶联剂KH550表面改性的纳米ZnO与GAER进行复合,以丁二酸酐为固化剂,制备KH550-nano-ZnO/GAER生物基复合涂层。对纳米ZnO改性前后微观结构的变化进行表征;采用示差扫描量热仪对丁二酸酐/GAER体系的固化过程进行研究,测试KH550-nano-ZnO的加入对GAER固化膜力学性能、热性能、动态力学性能以及抗菌性能的影响。结果表明:适量KH550-nano-ZnO的加入,可以增加GAER固化体系的玻璃化温度,提高涂层表面的抗冲击性,KH550-nano-ZnO含量的增加使得涂层的硬度增加,附着力下降,热稳定性增加。复合涂层的起始热失重温度(T5%)比纯GAER高12.6~15.4℃。当KH550-nano-ZnO含量为2%(质量分数)时,玻璃化转变温度与纯GAER树脂相比增加了30.7℃。KH550-nano-ZnO/GAER固化涂膜对大肠杆菌和金黄色葡萄球菌的抗菌率均达到99.99%。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
侯桂香
谢建强
姚少巍
张云杰
蓝文
关键词 没食子酸纳米氧化锌生物基环氧树脂涂层抗菌性    
Abstract

Bio-based gallic acid epoxy resin(GAER)was prepared by gallic acid as main raw material. Nano-ZnO surface modification by KH-550 was used to prepare KH550-nano-ZnO. In addition, it was combined with the bio gallic acid epoxy resin(GAER), GAER/KH550-nano-ZnO composite coating was prepared by using succinic anhydride as curing agent. The changes of microstructure before and after modification of nano-ZnO were characterized. The curing process of succinic anhydride/GAER system was studied by differential scanning calorimeter. The effects of the KH550-nano-ZnO content on the mechanical properties, the thermal properties, dynamic mechanical properties and the antibacterial properties of the coating film were tested. The results show that the addition of proper amount of KH550-nano-ZnO can increase the glass transition temperature (Tg) of the system and improve the impact resistance of coating surface. The hardness and thermal stability of the coating are increased and the adhesion is decreased with the increased content of KH550-nano-ZnO. The initial thermal decomposition temperature (T5%) of the composite coating is higher 12.6-15.4℃ than that of pure GAER. When the content of KH550-nano-ZnO is 2%(mass fraction), the Tg is increased by 30.7℃ compared with pure GAER resin. The anti-bacterial rate of the KH550-nano-ZnO/GAER cured coating to Escherichia coli and Staphylococcus aureus reaches 99.99%.

Key wordsgallic acid    nano-zinc oxide    bio-based epoxy resin    coating    antibacterial property
收稿日期: 2019-04-01      出版日期: 2020-03-18
中图分类号:  TQ322.4+1  
基金资助:河北省自然科学青年基金(E2015209264);华北理工大学培育基金项目(SP201515)
通讯作者: 侯桂香     E-mail: hougx@ncst.edu.cn
作者简介: 侯桂香(1981-), 女, 副教授, 博士, 主要从事聚合物改性方面研究, 联系地址:河北省唐山市曹妃甸区新城渤海大道21号华北理工大学材料科学与工程学院(063210), E-mail:hougx@ncst.edu.cn
引用本文:   
侯桂香, 谢建强, 姚少巍, 张云杰, 蓝文. 生物基没食子酸环氧树脂/纳米氧化锌抗菌涂层的制备与性能[J]. 材料工程, 2020, 48(3): 34-39.
Gui-xiang HOU, Jian-qiang XIE, Shao-wei YAO, Yun-jie ZHANG, Wen LAN. Preparation and properties of bio-based gallic epoxy resin/nano-ZnO antibacterial coating. Journal of Materials Engineering, 2020, 48(3): 34-39.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000299      或      http://jme.biam.ac.cn/CN/Y2020/V48/I3/34
Fig.1  合成没食子酸环氧树脂的反应原理
Fig.2  固化体系的固化反应原理
Fig.3  纳米ZnO和KH-550改性纳米ZnO的红外光谱图
Fig.4  改性前后纳米ZnO的透射电镜图
(a)纳米氧化锌;(b)KH550改性纳米氧化锌
Fig.5  改性前后纳米ZnO的粒度分布
Fig.6  丁二酸酐固化没食子酸环氧树脂体系的DSC曲线
Fig.7  丁二酸酐固化没食子酸环氧工艺参数外推图
Sample Pencil hardness Adhesion/grade Impact resistance/(kg·cm)
0# 3H 0 20
0.5# 3H 0 30
1# 4H 1 40
2# 5H 1 40
3# 5H 2 35
Table 1  不同样品固化涂层的力学性能
Fig.8  不同样品固化涂层的热失重分析曲线
Fig.9  不同固化样品的玻璃化转变温度曲线
Sample Antibacterial rate/%
Staphylococcus aureus Escherichia coli
0# 97.69 97.89
0.5# 98.36 98.99
1# 99.99 99.99
2# 99.99 99.99
3# 99.99 99.99
Table 2  不同样品固化涂层的抗菌率
1 张雅丽, 李建科, 刘柳, 等. 五倍子没食子酸研究进展[J]. 食品工业科技, 2013, 34 (10): 386- 390.
1 ZHANG Y L , LI J K , LIU L , et al. Research progress in gallic acid from Galla Chinensis[J]. Science and Technology of Food Industry, 2013, 34 (10): 386- 390.
2 AOUF C , NOUAILHAS H , FACHE M , et al. Multi-functionalization of gallic acid:synthesis of a novel bio-based epoxy resin[J]. European Polymer Journal, 2013, 49 (6): 1185- 1195.
doi: 10.1016/j.eurpolymj.2012.11.025
3 PATIL D M , PHALAK G A , MHASKE S T . Synthesis of bio-based epoxy resin from gallic acid with various epoxy equivalent weights and its effects on coating properties[J]. Journal of Coatings Technology and Research, 2017, 14 (2): 355- 365.
doi: 10.1007/s11998-016-9853-x
4 TARZIA A , MONTANARO J , CASIELLO M , et al. Synthesis, curing, and properties of an epoxy resin derived from gallic acid[J]. Bio-Resources, 2017, 13 (1): 632- 645.
5 ESPITIA P J P , SOARES N F F , COIMBRA J S , et al. Zinc oxide nanoparticles:synthesis, antimicrobial activity and food packaging applications[J]. Food and Bioprocess Technology, 2012, 5 (5): 1447- 1464.
doi: 10.1007/s11947-012-0797-6
6 陈枭, 石倩, 杨乐, 等. 纳米氧化锌表面修饰及其应用研究进展[J]. 化工进展, 2018, 37 (2): 621- 627.
6 CHEN X , SHI Q , YANG L , et al. Research progress in surface-modification and applications of nano zinc oxide[J]. Chemical Industry and Engineering Progress, 2018, 37 (2): 621- 627.
7 SIRELKHATIM A , MAHMUD S , SEENI A , et al. Review on zinc oxide nanoparticles:antibacterial activity and toxicity mechanism[J]. Nano-Micro Letters, 2015, 7 (3): 219- 242.
doi: 10.1007/s40820-015-0040-x
8 MA J , ZHU W , TIAN Y , et al. Preparation of zinc oxide-starch nanocomposite and its application on coating[J]. Nanoscale Research Letters, 2016, 11 (1): 200.
doi: 10.1186/s11671-016-1404-y
9 MIZIELIŃSKA M , KOWALSKA U , JAROSZ M , et al. The effect of UV aging on antimicrobial and mechanical properties of PLA films with incorporated zinc oxide nanoparticles[J]. International Journal of Environmental Research and Public Health, 2018, 15 (4): 794.
doi: 10.3390/ijerph15040794
10 JI P , WANG C , JIANG Z , et al. Influence of surface modification of zinc oxide nanoparticles on thermal behavior and hydrophilic property of PET-PEG composites[J]. Polymer Composites, 2016, 37 (6): 1830- 1838.
doi: 10.1002/pc.23357
11 左银泽, 陈亮, 朱斌, 等. 纳米氧化锌负载氧化石墨烯/环氧树脂复合材料性能研究[J]. 材料工程, 2018, 46 (5): 22- 28.
11 ZUO Y Z , CHEN L , ZHU B , et al. Properties of graphene oxide loaded by nano-ZnO/epoxy resin composites[J]. Journal of Materials Engineering, 2018, 46 (5): 22- 28.
12 RYU B Y , EMRICK T . Bisphenol-1, 2, 3-triazole (BPT) epoxies and cyanate esters:synthesis and self-catalyzed curing[J]. Macromolecules, 2011, 44 (14): 5693- 5700.
doi: 10.1021/ma200767j
13 侯桂香, 谢建强, 李婷婷, 等. 生物基没食子酸环氧树脂/氧化石墨烯纳米复合材料的制备及热性能[J]. 高分子材料科学与工程, 2016, 32 (7): 159- 163.
13 HOU G X , XIE J Q , LI T T , et al. Preparation and thermal properties of bio-based gallic epoxy resin/graphene oxide composites[J]. Polymer Materials Science and Engineering, 2016, 32 (7): 159- 163.
14 MA Z G , GAO J G . Curing kinetics of o-cresol formaldehyde epoxy resin and succinic anhydride system catalyzed by tertiary amine[J]. J Phys Chem:B, 2006, 110, 12380- 12383.
doi: 10.1021/jp060243z
15 周茗萱, 李文翔, 高念, 等. 纳米氧化锌改性环氧树脂的性能研究[J]. 粘接, 2017, 38 (11): 28- 31.
doi: 10.3969/j.issn.1001-5922.2017.11.003
15 ZHOU M X , LI W X , GAO N , et al. Properties of epoxy resin modified with nano-ZnO[J]. Adhesion, 2017, 38 (11): 28- 31.
doi: 10.3969/j.issn.1001-5922.2017.11.003
[1] 夏先朝, 冯学磊, 孙京丽, 聂敬敬, 庞松, 袁勇, 董泽华. 镁合金超疏水环氧复合涂层的制备与性能[J]. 材料工程, 2022, 50(8): 124-132.
[2] 王露, 陈雷雷, 徐凯, 娄明, 杜玉洁, 毛勇, 常可可. 前过渡族元素X对TiAlXN涂层结构与性能的作用[J]. 材料工程, 2022, 50(7): 69-79.
[3] 刘庆帅, 刘秀波, 刘一帆, 张林, 孟元, 刘怀菲. 陶瓷基高温自润滑复合涂层的制备及摩擦学性能研究进展[J]. 材料工程, 2022, 50(6): 61-74.
[4] 安强, 祁文军, 左小刚. TA15钛合金表面原位合成TiC增强钛基激光熔覆层的组织与耐磨性[J]. 材料工程, 2022, 50(4): 139-146.
[5] 姜明明, 孙树峰, 王津, 王萍萍, 孙晓雨, 邵晶, 刘纪新, 曹爱霞, 孙维丽, 陈希章. 激光熔覆制备高熵合金涂层耐磨性研究进展[J]. 材料工程, 2022, 50(3): 18-32.
[6] 陈倩, 赵雪阳, 尤德强, 曾戎, 于振涛, 李卫, 王小健. 3D打印纯钛骨支架表面掺银介孔生物活性玻璃涂层的性能研究[J]. 材料工程, 2022, 50(11): 34-45.
[7] 余芳, 胡晓婧, 唐其金, 夏雨飘, 吕中, 杨浩. 具有可逆润湿性Bi2O3涂层在抗菌和油水分离中的应用[J]. 材料工程, 2021, 49(9): 167-174.
[8] 李红, 韩祎, 曹健, MARIUSZBober, JACEKSenkara. 高熵合金在钎焊和表面工程领域的应用研究进展[J]. 材料工程, 2021, 49(8): 1-10.
[9] 谷籽旺, 郭文敏, 张弘鳞, 李文娟. 基于核壳结构粉体设计的CoNiCrAlY-Al2O3复合涂层组织结构及其抗氧化性能[J]. 材料工程, 2021, 49(7): 112-123.
[10] 王海博, 李春燕, 李金玲, 王顺平, 寇生中. Fe基非晶合金粉末的研究进展[J]. 材料工程, 2021, 49(4): 34-51.
[11] 陈燕宁, 吴量, 陈勇花, 程苓, 姚文辉, 潘复生. 镁合金表面氧化石墨烯复合涂层的研究现状[J]. 材料工程, 2021, 49(12): 1-13.
[12] 谢治辉, 舒雅, 胡婷. 不同无机阴离子插层层状双金属氢氧化物的合成及其离子交换特性[J]. 材料工程, 2021, 49(12): 65-71.
[13] 孙文昕, 樊丽君, 郑钟印, 邹玉红, 田景睿, 曾荣昌. 医用金属表面含锶涂层耐蚀性和生物相容性研究进展[J]. 材料工程, 2021, 49(12): 72-82.
[14] 王港, 刘秀波, 刘一帆, 祝杨, 欧阳春生, 孟元, 罗迎社. 304不锈钢激光熔覆Co-Ti3SiC2自润滑复合涂层微观组织与摩擦学性能[J]. 材料工程, 2021, 49(11): 105-115.
[15] 杨博, 李广荣, 徐彤, 杨冠军. 大气等离子喷涂环境障涂层的预热处理致密化方法[J]. 材料工程, 2021, 49(11): 116-124.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn