Influence of Gd2O3 doping contents on conductivity of Ce1-xGdxO2-δ electrolyte
LIU Yuan-yuan1,2,3, LI Shu-ting1,2, PENG Jun1,2, AN Sheng-li1,2
1. School of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou 014010, Inner Mongolia, China;
2. Inner Mongolia Key Laboratory of Advanced Ceramic Materials and Devices, Baotou 014010, Inner Mongolia, China;
3. College of Chemistry and Chemical Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, Inner Mongolia, China
Abstract:Gd2O3 doped CeO2(GDC) was widely used in solid oxide fuel cell (SOFC) because of its high ionic conductivity at 500-700 ℃. However, during the SOFC operation, Ce4+ was reduced to Ce3+ at the anode side of the battery, resulting in electronic leakage, which leaded to the degradation of SOFC battery performance. The Ce1-xGdxO2-δ(x=0.05,0.10,0.15,0.20,0.25, mole fraction) solid electrolyte was prepared by sol-gel method. The effects of different Gd3+ doping amount on the total conductivity and electronic conductivity of GDC electrolyte were studied, and the relationships between the total conductivity, electronic conductivity, and temperature, oxygen partial pressure were analyzed. The results show that, when the Gd2O3 doping content is 0.20, the total conductivity of GDC reaches the highest 8.59×10-2 S·cm-1 at 750 ℃. The electronic conductivity decreases with the increase of Gd3+doping amount, and reaches the highest 6.47×10-4 S·cm-1 at 750 ℃ when Gd3+doping amount is 0.10. The GDC with doping amount of 0.20 highlights the highestionic conductivity because of its highest total conductivity and smaller electronic conductivity.
刘媛媛, 李舒婷, 彭军, 安胜利. Gd2O3掺杂量对Ce1-xGdxO2-δ电解质导电性能的影响[J]. 材料工程, 2020, 48(6): 118-124.
LIU Yuan-yuan, LI Shu-ting, PENG Jun, AN Sheng-li. Influence of Gd2O3 doping contents on conductivity of Ce1-xGdxO2-δ electrolyte. Journal of Materials Engineering, 2020, 48(6): 118-124.
[1] MINH N Q. Ceramic fuel-cells[J]. Journal of the American Ceramic Society,1993,76:563-588.
[2] 石井弘毅. 图说燃料电池的原理与应用[M]. 白彦华,杨晓辉,译.北京:科学出版社,2003. ISHII H. Illustrated the principle and application of fuel cell[M]. Translated by BAI Y H,YANG X H.Beijing:Science Press,2003.
[3] 毛宗强. 燃料电池[M]. 北京:化学工业出版社,2005. MAO Z Q. Fuel cell[M]. Beijing:Chemical Industry Press,2005.
[4] STEELE B C, HEINZEL A. Materials for fuel-cell technologies[J]. Nature,2001,414(6861):345-352.
[5] MINH N Q, TAKAHASHI T. Science and technology of ceramic fuel cells[M]. Amsterdam: Elsevier,1990.140.
[6] 韩敏芳,张永亮. 固体氧化物燃料电池中的陶瓷材料[J]. 硅酸盐学报,2017(45):1548-1554. HAN M F, ZHANG Y L.Ceramic materials for solid oxide fuel cell[J]. Journal of the Chinese Ceramic Society,2017(45):1548-1554.
[7] LAKSHMI V V,BAURI R,GANDHI A S,et al. Synthesis and characterization of nanocrystalline ScSZ electrolyte for SOFCs[J]. International Journal of Hydrogen Energy,2011,36(22):14936-14942.
[8] 薛守庆. 纳米二氧化铈的化学制备方法及应用研究[J]. 化工技术与开发,2014(8):38-40. XUE S Q. Study progress of chemical preparation of nanometer CeO2[J]. Technology & Development of Chemical Industry,2014(8):38-40.
[9] 郭瑞华,张捷宇,周国治,等.固体氧化物燃料电池电解质Gd0.1BaxCe0.9-xO2-σ的制备及性能分析研究[J].化工新型材料,2017,45(7):120-122. GUO R H,ZHANG J Y,ZHOU G Z,et al. Preparation and performance analysis of solid oxide fuel cell electrolyte Gd0.1BaxCe0.9-xO2-σ[J]. New Chemical Materials,2017,45(7):120-122.
[10] WUT W,JIA G X,WANG X X,et al. Transitional area of Ce4+ to Ce3+ in SmxCayCe1-x-yO2-δ with various doping and oxygen vacancy concentrations: a GGA+U study [J]. Chinese J Struct Chem,2018,37(2):198-209.
[11] 吴铜伟,贾桂霄,包金小,等. CaO或BaO与Sm2O3共掺杂CeO2体系电子结构和氧离子迁移的DFT+U研究[J]. 无机化学学报,2016,32(8):1363-1369. WU T W,JIA G X,BAO J X,et al. Electronic structure and oxygen ion migration of the CaO or Bao and Sm2O3Co-doped CeO2system:a DFT + U study[J].Chinese Journal of Inorganic Chemistry,2016,32(8):1363-1369.
[12] YAHIRO H,EGUCHI Y,EGUCHI K,et al. Oxygen ion conductivity of the ceria-samarium oxide system with fluorite structure[J]. Journal of Applied Electrochemistry,1988,18(4):527-531.
[13] 苑亚杰,张梦霏,李天君,等. Ce0.8Sm0.1Nd0.1O2-σ/La10Si6O27复合电解质材料的电学性能研究[J]. 稀有金属材料与工程,2018,47(1):339-343. YUAN Y J, ZHANG M F, LI T J, et al. Electrical properties of Ce0.8Sm0.1Nd0.1O2-σ/La10Si6O27composite electrolyte[J]. Rare Metal Materials and Engineering,2018,47(1):339-343.
[14] ZHANG T S,MA J,CHENG H,et al. Ionic conductivity of high-purity Gd-doped ceria solid solutions[J]. Materials Research Bulletin,2006,41(3):563-568.
[15] MOGENSEN M,SAMMES N M,TOMPSETT G A. Physical,chemical and electrochemical properties of pure and doped ceria[J]. Solid State Ionics,2000,129:63-94.
[16] STEELE B C H. Appraisal of Ce1-yGdyO2-y/2 electrolytes for IT-SOFC operation at 500 ℃[J]. Solid State Ionics,2000,129:95-110.
[17] LEE K T,YOON H S,WACHSMAN E D. The evolution of low temperature solid oxide fuel cells[J]. Journal of Materials Research,2012,27:2063-2078.
[18] SHIMONOSONO T,HIRATA Y,EHIRA Y,et al. Electronic conductivity measurement of Sm- and La-doped ceria ceramics by Hebb-Wagner method[J]. Journal of Solid State Ionics,2004,174(1/4):27-33.
[19] WANG S R,TAKEHISA K,MASAYUKI D,et al. Electrical and ionic conductivity of Gd-doped ceria[J]. Journal of the Electrochemical Society,2000,147(10):3606-3609.
[20] QIAN J,TAO Z,XIAO J,et al. Performance improvement of ceria-based solid oxide fuel cells with yttria-stabilized zirconia as an electronic blocking layer by pulsed laser deposition[J]. International Journal of Hydrogen Energy,2013,38:2407-2412.
[21] 程亮,罗凌虹,徐序,等. 燃烧法制备不同钆含量的GDC纳米粉体及其电导性[J]. 硅酸盐学报,2018(3):354-360. CHENG L,LUO L H, XU X,et al. Preparation of GDC nano-powder with different gadolinium contents by combustion method and its electrical conductivity[J]. Journal of the Chinese Ceramic Society,2018(3):354-360.
[22] 宋希文,赵永旺,彭军,等. Gd2O3掺杂CeO2-δ固体电解质的电化学性能研究[J]. 功能材料,2004,35(增刊1):988-990. SONG X W,ZHAO Y W,PENG J,et al. Electrochemical performance of Gd2O3 doped CeO2-δelectrolyte[J]. Journal of Functional Materials,2004,35(Suppl 1):988-990.
[23] 史美伦.交流阻抗谱原理及应用[M].北京:国防工业出版社,2001. SHE M L. AC impedance spectroscopy principles and applications[M]. Beijing:National Defense Industry Press,2001.
[24] 王立帆,刘媛媛,彭军,等. Ce0.8Sm0.2O1.9固体电解质的电子电导性研究[J].中国稀土学报,2018,36(1):107-113. WANG L F,LIU Y Y,PENG J,et al. Study on the electronic conductivity of Ce0.8Sm0.2O1.9 solid electrolyte[J].Journal of the Chinese Rare Earth Society,2018,36(1):107-113.