Please wait a minute...
 
2222材料工程  2020, Vol. 48 Issue (11): 170-176    DOI: 10.11868/j.issn.1001-4381.2019.000646
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
环糊精微球改性环氧树脂的制备及其碳纤维复合材料的X射线穿透性研究
郑凌祺1, 李刚1,*(), 杨小平1, 李强2, 石凌飞3
1 北京化工大学 有机无机复合材料国家重点实验室, 北京 100029
2 潍坊市科技合作中心, 山东 潍坊 261000
3 公安部第一研究所, 北京 100048
Preparation of cyclodextrin microspheres modified epoxy resin and X-ray penetration mechanism of carbon fiber composites
Ling-qi ZHENG1, Gang LI1,*(), Xiao-ping YANG1, Qiang LI2, Ling-fei SHI3
1 State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
2 Weifang Science and Technology Cooperation Center, Weifang 261000, Shandong, China
3 First Research Institute of Ministry of Public Security, Beijing 100048, China
全文: PDF(4263 KB)   HTML ( 0 )  
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 

利用4,4'-二环己基甲烷二异氰酸酯与β-环糊精合成的环糊精微球(CDMS),制备环糊精微球改性环氧树脂(CDEP),表征CDMS的微观形貌及其在环氧树脂中的分散性,研究树脂固化物的交联密度和介电性能;制备T300碳纤维织物复合材料,考察复合材料的X射线穿透性能,提出X射线穿透机理。结果表明:圆球形CDMS的平均粒径为(11.5±2)μm,且在环氧树脂中的分散性良好;随着CDMS添加量的质量分数由0%升至5%,树脂固化物的交联密度由2.50×10-2 mol·cm-3降至2.35×10-2 mol·cm-3,介电常数由4.10降至3.43;30 kV管电压下复合材料X射线穿透率由94.97%升至96.82%,微球的空腔结构减少了X光子在复合材料内部的碰撞次数,有效提高了X射线穿透性能。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑凌祺
李刚
杨小平
李强
石凌飞
关键词 碳纤维环氧树脂复合材料介电性能X射线穿透    
Abstract

Cyclodextrin microspheres (CDMS) was synthesized by 4, 4'-dicyclohexylmethane diisocyanate and β-cyclodextrin, and applied to prepare the cyclodextrin microspheres modified epoxy resin(CDEP). The microscopic morphology and dispersibility of CDMS in epoxy resin were characterized. Crosslinking density and dielectric properties of CDMS modified epoxy resin were investigated.The T300 carbon fiber fabric/modified epoxy composite was prepared. The X-ray penetration properties of the composite were investigated and X-ray penetration mechanism was proposed. The results show that the dispersibility of spherical CDMS in epoxy resin is good and its average diameter is about (11.5±2) μm. As mass fraction of CDMS is increased from 0% to 5%, the crosslink density of epoxy resin is reduced from 2.50×10-2 mol·cm-3 to 2.35×10-2 mol·cm-3 and dielectric constant is decreased from 4.10 to 3.43. X-ray penetration of composites is increased from 94.97% to 96.82% at 30 kV tube voltage. The number of collisions of X-rays inside the composite is reduced by the cavity structure of the microspheres, which effectively improves the X-ray penetration performance of composites.

Key wordscarbon fiber    epoxy resin    composite    dielectric property    X-ray penetration
收稿日期: 2019-07-09      出版日期: 2020-11-20
中图分类号:  TB332  
通讯作者: 李刚     E-mail: ligang@mail.buct.edu.cn
作者简介: 李刚(1974-), 男, 研究员, 博士, 研究方向为碳纤维树脂基复合材料, 联系地址:北京市朝阳区北三环东路15号北京化工大学(100029), E-mail:ligang@mail.buct.edu.cn
引用本文:   
郑凌祺, 李刚, 杨小平, 李强, 石凌飞. 环糊精微球改性环氧树脂的制备及其碳纤维复合材料的X射线穿透性研究[J]. 材料工程, 2020, 48(11): 170-176.
Ling-qi ZHENG, Gang LI, Xiao-ping YANG, Qiang LI, Ling-fei SHI. Preparation of cyclodextrin microspheres modified epoxy resin and X-ray penetration mechanism of carbon fiber composites. Journal of Materials Engineering, 2020, 48(11): 170-176.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000646      或      http://jme.biam.ac.cn/CN/Y2020/V48/I11/170
Fig.1  β-CD与CDMS的FTIR图
Fig.2  β-CD与CDMS的XRD图
Fig.3  β-CD与CDMS的TGA和DTG曲线
Fig.4  CDMS的SEM图像
Fig.5  CDMS的粒径分布图
Fig.6  CDMS在树脂体系中分散的OM图像
(a), (b)2.5%CDMS; (c), (d)5%CDMS
Fig.7  CDMS/EP树脂体系的DMA曲线
System CDMS/% T/K E′/MPa ρ/(mol·cm-3)
Control 0 427.8 87.0 2.50×10-2
CDEP-1 2.5 426.2 85.6 2.42×10-2
CDEP-2 5 427.9 83.7 2.35×10-2
Table 1  树脂体系的交联密度
Fig.8  CDMS/EP树脂体系的介电性能
(a)介电常数;(b)介电损耗
Tube voltage/kV CF/Control/mmAl CF/CDEP-1/mmAl CF/CDEP-2/mmAl
21 0.401 0.394 0.389
24 0.460 0.453 0.448
27 0.527 0.522 0.517
30 0.577 0.571 0.566
Table 2  不同管电压下碳纤维复合材料的铝当量
Fig.9  碳纤维复合材料的X射线穿透率
Fig.10  碳纤维复合材料的X射线扫描照片
(a)CF/Control; (b)CF/CDEP-1;(c)CF/CDEP-2
Fig.11  碳纤维复合材料的X射线穿透机理模型
(a)CF/Control; (b)CF/CDEP
1 马少华, 王勇刚, 回丽, 等. 湿热环境对碳纤维环氧树脂复合材料弯曲性能的影响[J]. 材料工程, 2016, 44 (2): 81- 87.
1 MA S H , WANG Y G , HUI L , et al. Influence of hydrothermal environment on flexural property of carbon fiber epoxy composite[J]. Journal of Materials Engineering, 2016, 44 (2): 81- 87.
2 李涛, 陈蔚, 成理, 等. 碳纤维复合材料医用床面板研制[J]. 医学信息, 2009, 1 (5): 57- 59.
2 LI T , CHEN W , CHENG L , et al. Study and manufacture of the table top of carbon fiber composite for medical equipment[J]. Medical Information, 2009, 1 (5): 57- 59.
3 吴焱, 邵明. 泡沫夹芯结构碳纤维复合材料医疗床板的强度研究[J]. 高科技纤维与应用, 2010, 35 (6): 35- 38.
3 WU Y , SHAO M . Strength research of "sandwich" structure on carbon fiber composite medical-bed plate[J]. Hi-Tech Fiber and Application, 2010, 35 (6): 35- 38.
4 何烨, 肖建文, 姚烛威, 等. 碳纤维表面物理结构对复合材料界面剪切强度的影响[J]. 材料工程, 2019, 47 (2): 146- 152.
4 HE Y , XIAO J W , YAO Z W , et al. Effect of surface physical structures on interfacial shear strength of carbon fibers reinforced epoxy resin composite[J]. Journal of Materials Engineering, 2019, 47 (2): 146- 152.
5 高坤, 孙宝岗, 杨智勇, 等. 透波复合材料用树脂基体介电性能的改善研究进展[J]. 功能材料, 2015, 46 (增刊2): 44- 48.
5 GAO K , SUN B G , YANG Z Y , et al. Improvement research progress in the dielectric properties of resin matrix for wave-transparent composites[J]. Journal of Functional Materials, 2015, 46 (Suppl 2): 44- 48.
6 GU J , DONG W , XU S , et al. Development of wave-transparent, light-weight composites combined with superior dielectric performance and desirable thermal stabilities[J]. Composites Science and Technology, 2017, 144, 185- 192.
doi: 10.1016/j.compscitech.2017.03.027
7 VOLKSEN W , MILLER , ROBERT D , et al. Low dielectric constant materials[J]. Chemical Reviews, 2010, 110 (1): 56- 110.
doi: 10.1021/cr9002819
8 ZHAO X Y , LIU H J . Review of polymer materials with low dielectric constant[J]. Polymer International, 2010, 59 (5): 597- 606.
9 周成飞. 低介电常数聚合物材料的研究进展[J]. 高分子材料科学与工程, 2017, 43 (14): 41- 44.
9 ZHOU C F . Development of low dielectric constant polymer materials[J]. Polymer Materials Science and Engineering, 2017, 43 (14): 41- 44.
10 黄伟平. 低介电常数高分子材料[J]. 合成材料老化与应用, 2008, 37 (2): 39- 44.
10 HUANG W P . Low dielectric constant polymer[J]. Synthetic Materials Aging and Application, 2008, 37 (2): 39- 44.
11 WANG J Y , YANG S Y , HUANG Y L , et al. Synthesis and properties of trifluoromethyl groups containing epoxy resins cured with amine for low Dk materials[J]. Journal of Applied Polymer Science, 2012, 124 (3): 2615- 2624.
doi: 10.1002/app.35300
12 MAEX K . Porous low dielectric constant materials for microelectronics[J]. Journal of Applied Physics, 2006, 364, 201- 215.
13 TANG Y , YUAN L , LIANG G , et al. High performance low-kcyanate ester resins with a thermally stable cyclodextrin microsphere[J]. RSC Advances, 2014, 4 (31): 16136- 16145.
doi: 10.1039/C4RA00750F
14 ZHAO C , WEI X , HUANG Y , et al. Preparation and unique dielectric properties of nanoporous materials with well-controlled closed-nanopores[J]. Physical Chemistry Chemical Physics, 2016, 18 (28): 19183- 19193.
doi: 10.1039/C6CP00465B
15 蔡宏洋, 李刚, 刘海洋. 柔性胺T403对环氧树脂体系力学性能及交联密度的影响[J]. 玻璃钢/复合材料, 2009, (1): 38- 41.
15 CAI H Y , LI G , LIU H Y . Effects of flexible amine T403 on the mechanic properties and crosslinking density in epoxy systems[J]. Fiber Reinforced Plastics/Composites, 2009, (1): 38- 41.
16 杜继星, 张晓敏, 宁静, 等. 医用诊断X射线的衰减与防护研究[J]. 军事医学, 2016, 40 (6): 505- 507.
16 DU J X , ZHANG X M , NING J , et al. Attenuation and protection study of medical diagnostic X-rays[J]. Military Medical Sciences, 2016, 40 (6): 505- 507.
[1] 唐婧缘, 龙依婷, 黄旭, 蒲琳钰. 核-双壳BT@TiO2@PDA纳米粒子的制备及其复合薄膜的介电性能[J]. 材料工程, 2022, 50(9): 59-69.
[2] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[3] 孔国强, 安振河, 魏化震, 李莹, 邵蒙, 于秋兵, 纪校君, 李居影, 王康. 碳纤维丝束结构对碳纤维/酚醛复合材料烧蚀性能的影响[J]. 材料工程, 2022, 50(9): 113-119.
[4] 米玉洁, 宋明明, 张存瑞, 张贵恩, 王月祥, 常志敏. 羰基铁室温硫化硅橡胶复合材料的吸波性能[J]. 材料工程, 2022, 50(9): 120-126.
[5] 邢宇, 张代军, 王成博, 倪洪江, 李军, 陈祥宝. PEEK复合材料用碳纤维上浆剂研究进展[J]. 材料工程, 2022, 50(8): 70-81.
[6] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[7] 倪洪江, 邢宇, 戴霄翔, 李军, 张代军, 陈祥宝. 航空发动机用聚酰亚胺树脂基复合材料固化工艺及热稳定性能[J]. 材料工程, 2022, 50(7): 102-109.
[8] 吕双祺, 黄佳, 孙燕涛, 付尧明, 杨晓光, 石多奇. 莫来石纤维增强SiO2气凝胶复合材料压缩回弹性能实验与建模研究[J]. 材料工程, 2022, 50(7): 119-127.
[9] 杨智勇, 臧家俊, 方丹琳, 李翔, 李志强, 李卫京. 城轨列车制动盘SiCp/A356复合材料热疲劳裂纹扩展机理[J]. 材料工程, 2022, 50(7): 165-175.
[10] 彭斌意, 刘洋, 郑晓董, 李治国, 李国平, 胡建波, 王永刚. 激光选区熔化颗粒增强钛基复合材料的抗压性能[J]. 材料工程, 2022, 50(6): 36-48.
[11] 李军, 刘燕峰, 倪洪江, 张代军, 陈祥宝. 航空发动机用树脂基复合材料应用进展与发展趋势[J]. 材料工程, 2022, 50(6): 49-60.
[12] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[13] 于永涛, 刘元军. 原位聚合法制备铁氧体/聚苯胺吸波复合材料的研究进展[J]. 材料工程, 2022, 50(5): 90-99.
[14] 程子敬, 王凯峰, 张连洪. 基于微观尺度X射线断层扫描技术的短切碳纤维SMC复合材料失效分析[J]. 材料工程, 2022, 50(5): 130-138.
[15] 杜宗波, 时双强, 陈宇滨, 褚海荣, 杨程. 介电型石墨烯吸波复合材料研究进展[J]. 材料工程, 2022, 50(4): 74-84.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn