Effect of aging treatment on microstructure and properties of Al-Zr-Sc(-Er) alloys
ZHAO Hui1, ZHAO Fei1, YANG Chang-long2, HAN Yu3, JIN Dong1, LI Hong-ying1
1. School of Materials Science and Engineering, Central South University, Changsha 410083, China;
2. State Grid Shenyang Electric Power Supply Company, Shenyang 110042, China;
3. Global Energy Interconnection Research Institute, Beijing 102209, China
Abstract:The effects of aging treatment on microstructure and properties of Al-Zr-Sc(-Er) alloys were investigated by TEM, STEM, hardness tests and electric conductivity tests systematically. Results show that the aging response speed, peak hardness and thermal stability of Al-Zr-Sc alloys are significantly improved by increasing Sc content, and increasing Zr content improves hardness and thermal stability, while decreasing the electric conductivity. Adding Er in Al-Zr-Sc alloys improves the aging response speed and promotes the precipitation of Zr and Sc. Hardness and electrical conductivity of alloy are improved, owing to the formation of Al3(Er, Sc, Zr) phases with core-double shell structure. For experimental alloys, one-stage aging at 300℃ provides the higher hardness but lower electric conductivity; one-stage aging at 400℃ can increase the aging response speed and electrical conductivity but decrease hardness; two-stage aging at 300℃/24 h+400℃ can lead to better match of conductivity, tensile strength and heat resistance.
赵辉, 赵菲, 杨长龙, 韩钰, 靳东, 李红英. 时效处理对Al-Zr-Sc(-Er)合金组织和性能的影响[J]. 材料工程, 2020, 48(5): 112-119.
ZHAO Hui, ZHAO Fei, YANG Chang-long, HAN Yu, JIN Dong, LI Hong-ying. Effect of aging treatment on microstructure and properties of Al-Zr-Sc(-Er) alloys. Journal of Materials Engineering, 2020, 48(5): 112-119.
[1] 胡飞雄,何广春. 南方电网西电东送节能减排效益分析[J].电力系统自动化, 2014, 38(17):20-23. HU F X, HE G C. Energy-saving and emission reduction benefit analysis on west-to-east transmission project of China southern power grid[J]. Automation of Electric Power Systems, 2014, 38(17):20-23.
[2] 陈迪,李成栋,赵晓东. 铝合金在电力传输领域的研究及应用[J]. 材料导报, 2013, 27(8):145-147. CHEN D, LI C D, ZHAO X D. Research and application of aluminum alloy in the field of power transmission[J]. Materials Review, 2013, 27(8):145-147.
[3] 贾艳军,杨亚军,袁红梅. 铝合金导线在我国的应用及发展[J].有色金属加工, 2017, 46(3):9-10. JIA Y J, YANG Y J, YUAN H M. Application and development of aluminum alloy conductor in China[J]. Nonferrous Metals Processing, 2017, 46(3):9-10.
[4] GAO T, CEGUERRA A, BREEN A, et al. Precipitation behaviors of cubic and tetragonal Zr-rich phase in Al-(Si-)Zr alloys[J]. Journal of Alloys and Compounds, 2016, 674(7):125-130.
[5] LOHAR A K, MONDA B, RAFAJA D, et al. Microstructural investigations on as-cast and annealed Al-Sc and Al-Sc-Zr alloys[J]. Materials Characterization, 2009, 60(11):1387-1394.
[6] 聂祚仁,文胜平,黄晖,等. 铒微合金化铝合金的研究进展[J]. 中国有色金属学报, 2011, 21(10):2361-2368. NIE Z R, WEN S P, HUANG H, et al. Research progress of Er-containing aluminum alloy[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(10):2361-2368.
[7] FULLER C B, SEIDMAN D N, DUNAND D C. Mechanical properties of Al(Sc,Zr) alloys at ambient and elevated temperatures[J]. Acta Materialia, 2003, 51(9):4803-4814.
[8] ZHANG J Y, ZHAO H T, ZHU J H, et al. Relationship between electrical resistivity and Al3(Zr,Sc) core-shell dispersoids of Al-Zr-Sc electrical transmission cable:modeling and experimental results[J]. Electric Power Systems Research, 2019, 168(3):1-7.
[9] LIU L, JIANG J T, ZHANG B, et al. Enhancement of strength and electrical conductivity for a dilute Al-Sc-Zr alloy via heat treatments and cold drawing[J]. Journal of Materials Science and Technology, 2019, 35(6):962-971.
[10] LI H Y, BIN J, LIU J J, et al. Precipitation evolution and coarsening resistance at 400℃ of Al microalloyed with Zr and Er[J]. Scripta Materialia, 2012, 67(1):73-76.
[11] WEN S P, GAO K Y, HUANG H, et al. Precipitation evolution in Al-Er-Zr alloys during aging at elevated temperature[J]. Journal of Alloys and Compounds, 2013, 574(10):92-97.
[12] JIA Z H, RØYSET J, SOLBERG J K, et al. Formation of precipitates and recrystallization resistance in Al-Sc-Zr alloys[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(8):1866-1871.
[13] MARQUIS E A, SEIDMAN D N. Nanoscale structural evolution of Al3Sc precipitates in Al(Sc) alloys[J]. Acta Materialia, 2001, 49(11):1909-1919.
[14] 戴晓元,夏长清,彭小敏. 7×××铝合金退火过程中二次Al3(Sc,Zr)粒子的析出行为[J]. 中国有色金属学报, 2010, 20(3):451-455. DAI X Y, XIA C Q, PENG X M. Precipitation behavior of Al3(Sc, Zr) secondary particles in 7×××aluminum alloys during annealing[J]. The Chinese Journal of Nonferrous Metals,2010, 20(3):451-455.
[15] VO N Q, DUNAND D C, SEIDMAN D N. Improving aging and creep resistance in a dilute Al-Sc alloy by microalloying with Si, Zr and Er[J]. Acta Materialia, 2014, 63(1):73-85.
[16] GAO Z H, LI H Y, LAI Y Y. Effect of minor Zr and Er on microstructure and mechanical properties of pure aluminum[J]. Materials Science and Engineering:A, 2013, 580(9):92-98.
[17] KANG W, LI H Y, ZHAO S X. Effects of homogenization treatments on the microstructure evolution, microhardness and electrical conductivity of dilute Al-Sc-Zr-Er alloys[J]. Journal of Alloys and Compounds, 2017, 704(5):683-692.
[18] TOLLEY A, RADMILOVIC V, DAHMAN U. Segregation in Al3(Sc,Zr) precipitates in Al-Sc-Zr alloys[J]. Scripta Materialia, 2005, 52(7):621-625.
[19] KRUG M E, DUNAND D C, SEIDMAN D N. Effects of Li addition on precipitation-strengthen Al-Sc and Al-Sc-Yb alloys[J]. Acta Materialia, 2011, 59(2):1700-1715.
[20] FROST H J, ASHBY M F. Deformation-mechanism maps:the plasticity and creep of metals and ceramics[M]. Oxford, UK:Pergamon Press, 1982.
[21] BOOTH-MORRISON C, DUNAND D C, SEIDMAN D N. Coarsening resistance at 400℃ of precipitation-strengthened Al-Zr-Sc-Er alloys[J]. Acta Materialia, 2011, 59(7):7029-7042.