Please wait a minute...
 
材料工程  2013, Vol. 0 Issue (6): 92-98    DOI: 10.3969/j.issn.1001-4381.2013.06.019
  综述 本期目录 | 过刊浏览 | 高级检索 |
Fe和Si杂质元素对7×××系高强航空铝合金组织及性能的影响
佘欢, 疏达, 储威, 王俊, 孙宝德
上海交通大学 金属基复合材料国家重点实验室,上海 200240
Effects of Fe and Si Impurities on the Microstructure and Properties of 7××× High Strength Aircraft Aluminum Alloys
SHE Huan, SHU Da, CHU Wei, WANG Jun, SUN Bao-de
State Key Laboratory of Metal Matrix Composites,Shanghai Jiao Tong University,Shanghai 200240,China
全文: PDF(1122 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 综述了Fe、Si杂质元素对7×××系高强航空铝合金的微观组织及力学性能的影响。Fe、Si主要是以粗大难溶杂质相形式存在。形成含Fe杂质相的种类较多,在含Cu量较高的合金中主要是形成Al7Cu2Fe相;形成含Si杂质相主要是Mg2Si相。Fe、Si杂质元素含量增加对合金强度的影响不大,但形成的富Fe、富Si粗大难溶杂质相含量的增加明显降低合金的塑性、断裂韧性和抗应力腐蚀性能。降低Fe、Si杂质元素含量是发展高综合性能航空铝合金的重要方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词 杂质7×××系铝合金断裂韧性抗应力腐蚀    
Abstract:Effects of Fe and Si impurities on the microstructure and mechanical properties of 7××× series aircraft aluminum alloys are overviewed. The Fe and Si impurities mainly form coarse and insoluble intermetallic particles in the microstructure. Among a variety of iron rich intermetallics, Al7Cu2Fe phase is typically found in the alloys with higher Cu content while the Mg2Si phase is the main silicon rich intermetallics. The increase of the Fe and Si contents has little effect on the strength, but markedly reduces the plasticity, fracture toughness and stress corrosion resistance of 7××× aluminum alloys in that the contents of coarse Fe-rich and Si-rich insoluble impurity phases increases.Reducing the contents of Fe and Si impurities is significant to develop the high comprehensive properties of aircraft aluminum alloys.
Key wordsimpurity    7×××    aluminum alloy    fracture toughness    stress corrosion resistance
收稿日期: 2012-04-11      出版日期: 2013-06-20
中图分类号: 

TG146.2

 
基金资助:

国家重点基础研究发展规划项目(973 计划)(2012CB619505);国家杰出青年科学基金项目(50825401);国家自然科学基金资助项目(51274141)

通讯作者: 孙宝德(1963-),男,教授,博士生导师,联系地址:上海交通大学金属基复合材料国家重点实验室(200240)     E-mail: bdsun@sjtu.edu.cn
作者简介: 佘欢(1986-),女,博士研究生,主要从事变形铝合金方面研究,联系地址:上海交通大学金属基复合材料国家重点实验室(200240),E-mail: shehuan@sjtu.edu.cn
引用本文:   
佘欢, 疏达, 储威, 王俊, 孙宝德. Fe和Si杂质元素对7×××系高强航空铝合金组织及性能的影响[J]. 材料工程, 2013, 0(6): 92-98.
SHE Huan, SHU Da, CHU Wei, WANG Jun, SUN Bao-de. Effects of Fe and Si Impurities on the Microstructure and Properties of 7××× High Strength Aircraft Aluminum Alloys. Journal of Materials Engineering, 2013, 0(6): 92-98.
链接本文:  
http://jme.biam.ac.cn/CN/10.3969/j.issn.1001-4381.2013.06.019      或      http://jme.biam.ac.cn/CN/Y2013/V0/I6/92
[1] WLOKA J, BURKLIN G, VIRTANEN S. Influence of second phase particles on initial electrochemical properties of AA7010-T76[J]. Electrochimica Acta, 2007, 53(4): 2055-2059.

[2] 杨守杰, 戴圣龙. 航空铝合金的发展回顾与展望[J]. 材料导报, 2005, 19(2): 76-80.YANG Shou-jie, DAI Sheng-long. A glimpse at development and application of aluminum alloys in aviation industry[J]. Materials Review, 2005, 19(2): 76-80.

[3] VRATNICA M, PLUVINAGE G, JODIN P, et al. Influence of notch radius and microstructure on the fracture behavior of Al-Zn-Mg-Cu alloys of different purity[J]. Materials and Design, 2010, 31(4): 1790-1798.

[4] THOMPSON D S. Metallurgical factors affecting high strength aluminum alloy production[J]. Metallurgical Transactions:A, 1975, 6(4): 671-683.

[5] HAHN G T, ROSENFIELD R. Metallurgical factors affecting fracture toughness of aluminum alloys[J]. Metallurgical Transactions:A, 1975, 6(4): 653-668.

[6] ALLENA C M, O’REILLY K A Q, CANTOR B, et al. Intermetallic phase selection in 1××× Al alloys[J]. Progress in Materials Science, 1998, 43(2): 89-170.

[7] 刘宏亮, 疏达, 王俊, 等. 超高强铝合金中杂质元素的研究现状[J]. 材料导报, 2011, 25(3): 84-88.LIU Hong-liang, SHU Da, WANG Jun, et al. Research status on impurities in ultra high strength aluminum alloys[J]. Materials Review, 2011, 25(3): 84-88.

[8] ROBSON J D. Microstructural evolution in aluminium alloy 7050 during processing[J]. Materials Science and Engineering:A, 2004, 382(1-2): 112-121.

[9] EIVANI A R, AHMED H, ZHOU J, et al. Evolution of grain boundary phases during the homogenization of AA7020 aluminum alloy[J]. Metallurgical and Materials Transactions A, 2009, 40A(3): 717-728.

[10] 王正安, 汪明朴, 杨文超, 等.1973铝合金铸态组织及均匀化退火组织研究[J]. 材料工程, 2010, (5): 56-63. WANG Zheng-an, WANG Ming-pu, YANG Wen-chao, et al. Microstructure of as-cast and homogenized 1973 aluminum alloy[J]. Journal of Materials Engineering, 2010, (5): 56-63.

[11] SHA G, WANG Y B, LIAO X Z, et al. Microstructural evolution of Fe-rich particles in an Al-Zn-Mg-Cu alloy during equal-channel angular pressing[J]. Materials Science and Engineering:A, 2010, 527(18-19): 4742-4749.

[12] 张新明, 欧军, 刘胜胆, 等. 固溶制度对 1933 铝合金自由锻件组织和力学性能的影响[J]. 中国有色金属学报, 2010, 20(1): 30-36. ZHANG Xin-ming, OU Jun, LIU Sheng-dan, et al. Effects of solution treatment on microstructure and mechanical properties of 1933 aluminum alloy forgings[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(1): 30-36.

[13] ANDREATTA F, TERRYN H, DE WIT J H W. Effect of solution heat treatment on galvanic coupling between intermetallics and matrix in AA7075-T6[J]. Corrosion Science, 2003, 45(8):1733-1746.

[14] GAO M, FENG C R, WEI R P. An analytical electron microscopy study of constituent particles in commercial 7075-T6 and 2024-T3 alloys[J]. Metallurgical and Materials Transactions:A, 1998, 29(4): 717-728.

[15] ATER R, KOO J Y, STEEDS J W, et al. Microanalytical study of the heterogeneous phases in commercial Al-Zn-Mg-Cu alloys[J]. Metallurgical Transactions:A, 1985, 16(11): 1925-1936.

[16] CVIJOVIC Z, RAKIN M, VRATNICA M, et al. Microstructural dependence of fracture toughness in high-strength 7000 forging alloys[J]. Engineering Fracture Mechanics, 2008, 75(8): 2115-2129.

[17] SENKOV O N, FROES F H, STOLYAROV V V, et al. Microstructure of aluminum-iron alloys subjected to severe plastic deformation[J]. Scripta Materialia, 1998, 38(10): 1511-1516.

[18] VIRK I S, VARIN R A. Structure of as cast L12 compounds in Al3Zr-Base alloys containing Cu and Mn[J]. Scripta Metallurgica et Materiala, 1991, 25(1): 85-88.

[19] ZHANG S, NIC J P, MIKKOLA D E. New cubic phases formed by alloying Al3Ti with Mn and Cr[J]. Scripta Metallurgica et Materiala, 1990, 24(1): 57-62.

[20] 李念奎, 崔建忠. Al-Zn-Mg-Cu系合金组织对性能的影响[J]. 轻合金加工技术, 2008, 36(1): 5-10. LI Nian-kui, CUI Jian-zhong. Effect of Al-Zn-Mg-Cu series alloy structures on the properties[J]. Light Alloy Fabrication Technology, 2008, 36(1): 5-10.

[21] DUMONT D, DESCHAMPS A, BRECHET Y. On the relationship between microstructure, strength and toughness in AA7050 aluminum alloy[J]. Materials Science and Engineering:A, 2003, 356(1-2): 326-336.

[22] KAMP N, SINCLAIR I, STARINK M J. Toughness-strength relations in the overaged 7449 Al-based alloy[J]. Metallurgical and Materials Transactions:A, 2002, 33(4): 1125-1136.

[23] DORWORD R C, BEEMTSN D J. Grain structure and quench-rate effects on strength and toughness of AA7050 Al-Zn-Mg-Cu-Zr alloy plate[J]. Metallurgical and Materials Transactions:A, 1995, 26(9): 2481-2484.

[24] JEFFVEY B P, NIEHOLAS J G, 周建辉. 喷射成形含铁、硅7150铝合金的组织和性能[J]. 上海钢研, 1998, (5): 35-42. JEFFVEY B P, NIEHOLAS J G, ZHOU Jian-hui. Microstructures and properties of sprayed 7150 aluminum alloy containing Fe and Si[J]. Shanghai Steel & Iron Research, 1998, (5): 35-42.

[25] 汝继刚, 伊琳娜. 高纯化对Al-Zn-Mg-Cu系高强铝合金性能的影响[J]. 航空材料学报, 2003, 23(增刊): 5-7. RU Ji-gang,YI Lin-na. The effect of high purification on the properties of Al-Zn-Mg-Cu high strength aluminum alloy[J]. Journal of Aeronautical Materials, 2003, 23(S1): 5-7.

[26] 陈康华, 方华婵, 陈祥. 复合添加 Zr、Cr和Pr对Al-Zn-Mg-Cu合金组织和性能的影响[J]. 中国有色金属学报, 2010, 20(2): 196-201. CHEN Kang-hua, FANG Hua-chan, CHEN Xiang. Effects of Zr, Cr and Pr additions on microstructure and properties of Al-Zn-Mg-Cu alloys[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(2): 196-201.

[27] FANG H C, CHEN K H, CHEN X, et al. Effect of Zr, Cr and Pr additions on microstructures and properties of ultra-high strength Al-Zn-Mg-Cu alloys[J]. Materials Science and Engineering:A, 2011, 528(25-26): 7606-7615.

[28] 王涛, 尹志民. 高强变形铝合金的研究现状和发展趋势[J]. 稀有金属, 2006, 30(2): 199-202. WANG Tao, YIN Zhi-min.Research status and development trend of ultra-high strength aluminum alloys[J]. Chinese Journal of Rare Metals, 2006, 30(2): 199-202.

[29] MORGENEYER T F, STARINK M J, SINCLAIR I. Evolution of voids during ductile crack propagation in an aluminium alloy sheet toughness test studied by synchrotron radiation computed tomography[J]. Acta Materialia, 2008, 56(8): 1671-1679.

[30] OHIRA T, KISHI T. Effect of iron content on fracture toughness and cracking processes in high strength Al-Zn-Mg-Cu alloy[J]. Materials Science and Engineering, 1986, 78(1): 9-19.

[31] 刘建华, 郝雪龙, 李松梅, 等. 基于灰色理论的高强铝合金应力腐蚀开裂预测模型的建立与应用[J]. 材料工程, 2011, (5): 60-64. LIU Jian-hua, HAO Xue-long, LI Song-mei, et al. Stress corrosion cracking model based on experiment and gray theory for high strength aluminum alloy[J]. Journal of Materials Engineering, 2011, (5): 60-64.

[32] NAJJAR D, MAGNIN T, WARNAR T J. Influence of critical surface defects and localized competition between anodic dissolution and hydrogen effects during stress corrosion cracking of a 7050 aluminium alloy[J]. Materials Science and Engineering:A, 1997, 238(2): 293-302.

[33] 苏景新. 铝锂合金剥蚀研究和分形维数在表征腐蚀中的应用. 浙江: 浙江大学, 2005.

[34] ANDREATTA F, LOHRENGEL M M, TERRYN H, et al. Electrochemical characterization of aluminium AA7075-T6 and solution heat treated AA7075 using a micro-capillary cell[J]. Electrochimica Acta, 2003, 48(20-22): 3239-3247.

[35] BIRBILI N, CAVANAUGH M K, BUCHHEIT R G. Electrochemical behavior and localized corrosion associated with Al7Cu2Fe particles in aluminum alloy 7075-T651[J]. Corrosion Science, 2006, 48(12): 4202-4215.

[36] KNIGHT S P, BIRBILIS N, MUDDLE B C, et al. Correlations between intergranular stress corrosion cracking, grain-boundary microchemistry, and grain-boundary electrochemistry for Al-Zn-Mg-Cu alloys[J]. Corrosion Science, 2010, 52(12): 4073-4080.
[1] 谭毅, 秦世强, 石爽, 姜大川, 李鹏廷, 李佳艳. 太阳能级硅中轻质元素(C,N,O)研究进展[J]. 材料工程, 2017, 45(2): 112-118.
[2] 许天旱, 冯耀荣. III型载荷分量对不同显微组织套管钻井用钢断裂韧性的影响[J]. 材料工程, 2015, 43(9): 66-73.
[3] 王家梁, 马德军, 白盟亮, 黄勇, 孙亮. 传统压痕法识别陶瓷材料断裂韧性的有效性研究[J]. 材料工程, 2015, 43(12): 81-88.
[4] 王炯, 李敏, 顾轶卓, 王绍凯, 张佐光. 炭纤维复合材料共固化液体成型工艺及层间性能研究[J]. 材料工程, 2013, (2): 93-98.
[5] 曹晶晶, 陈华辉, 杜飞, 陈功哲. 助熔剂对原位转化炭纤维/氧化铝复合材料组织结构与性能的影响[J]. 材料工程, 2013, 0(12): 54-58.
[6] 张新明, 余翠娟, 刘胜胆, 刘星兴, 张盼, 王莹莹. Fe和Si杂质对Al-Zn-Mg-Cu合金淬火敏感性的影响[J]. 材料工程, 2013, 0(10): 41-47.
[7] 刘建华, 郝雪龙, 李松梅, 于美. 基于灰色理论的高强铝合金应力腐蚀开裂预测模型的建立与应用[J]. 材料工程, 2011, 0(3): 60-64.
[8] 蔡建明, 马济民, 黄旭, 曹春晓. 高温钛合金中杂质元素Fe的扩散行为及其对蠕变抗力的损害作用[J]. 材料工程, 2009, 0(8): 84-88.
[9] 康永旺, 曲士昱, 宋尽霞, 袁华, 韩雅芳. 电子束熔炼Nb-Si系多元合金的组织和性能[J]. 材料工程, 2009, 0(4): 1-5.
[10] 袁鸿, 余槐, 王金雪, 王新南, 朱知寿, 李晓红. TC4-DT钛合金电子束焊接接头的损伤容限性能[J]. 材料工程, 2007, 0(8): 17-19.
[11] 曹睿, 马勤, 陈剑虹. 材料断口分形研究现状及发展前景[J]. 材料工程, 2007, 0(7): 78-82.
[12] 李红英, 耿进锋, 张建飞, 董显娟. 时效制度对B95ЛЧ锻件断裂韧性和抗应力腐蚀性能的影响[J]. 材料工程, 2006, 0(4): 28-32.
[13] 钟飞, 史耀武, 李晓延, 巩水利, 陈俐. BT20钛合金激光焊接接头的断裂韧性研究[J]. 材料工程, 2005, 0(4): 33-37.
[14] 艾云龙, 刘长虹, 左敦稳, 王珉. ZrO2/SiC-WSi2/MoSi2纳米复相陶瓷制备及增韧机制探讨[J]. 材料工程, 2004, 0(1): 33-37.
[15] 刘彤, 谢志鹏, 陆继伟, 黄勇. 长柱状晶高韧性氧化铝陶瓷的制备与性能研究[J]. 材料工程, 2001, 0(8): 14-17.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn