通过不同的原料体系在合适的工艺条件下成功制备出碳化钽晶须(TaCx)。由Ta2O5-NaCl-C-Ni和Ta2O5-NaF-C-C12H22O11(蔗糖)体系制备的晶须呈平直的纤维形态,其生长机理为气-液-固(VLS)机制。由Ta2O5-KCl-C-Ni体系制备的晶须一部分通过VLS机理生长,而另一部分则通过LS机理生长,前者呈四方柱状,后者呈具有锥状柱体和之字形端部的特殊形貌。所有的原料体系均是在相近的工艺条件下进行,即反应温度1150~1350℃,氮气气氛保护。本工作对晶须的化学成分、形貌、晶体结构和生长机理进行了较详细的研究。
Abstract
Tantalum carbide (TaCx) whiskers were successfully synthesized via different methods and different starting raw materials in the presence of Ni powder used for the catalysis of synthesis. In the Ta2O5-NaCl-C-Ni and Ta2O5-NaF-C-C12H22O11(sucrose) systems the whiskers grew via a vapor-liquid-solid (VLS) mechanism and exhibit a fairly straight fiber morphology. In the Ta2O5-KCl-C-Ni system, some whiskers grew via a VLS mechanism and others via a LS mechanism. Some whiskers grew with a zigzag shape tip and conical shaped morphology. All whiskers were grown under similar reaction conditions at temperatures which range from 1150℃ to 1350℃ in a nitrogen ambient atmosphere. The compositions, morphology, crystal structure and growth mechanism were investigated in detail.
关键词
TaCx晶须 /
形貌 /
生长机理
{{custom_keyword}} /
Key words
TaCx whiskers /
morphology /
growth mechanism
{{custom_keyword}} /
中图分类号:
TQ174
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Nagao Y,Knoer M,Altan T. Journal of Materials Processing Technology,1994,46:73-77.
[2] Lange K,Hetting A,Knoerr M. Journal of Materials Processing Technology,199 2,35:495-501.
[3] Q C Jiang,J R Fang,Q F Guan. Scripta Materialia,2001,45:199-204.
[4] J R Fang,Q C Jiang,Q F Guan. Fatigue and fracture of Engineering Material s and Component,2001.
[5] 姜启川,方健儒,赵宇光.金属热处理,2000,34:(1):34-35.
[6] JIANG Qichuan,FANG Jianru,ZHAO Yuguang,et al. Proceedings of 64th world fo undry congress. Paris,2000.9:CN-8.
[7] JIANG Qichuan,FANG Jianru,ZHAO Yuguang,et al. Proceedings of 1st ICDMT,Be ijing,2000,7:368-376.
[8] Hui-Ji Shi,Christophe Korn,Guy Pluvinage.Materials Science and Engineerin g,1998,A247:180-186.
[9] Z Xia,D Kujawski,F Ellyin. International Journal of Fatigue,1996,18(5):33 5-341.
[10] G Bernhart,G Moulinier,O Brucelle,D Delagnes. International Journal of Fa tigue,1999,(21):179-186.
[11] R P Skelton,H D Solomon,G R Halford,L R Kaisand,B N Leils. Low Cycle Fatigue,ASTM STP942,ASTM,Philadelphia,OPA,1988:209-235.
[12] S S Manson. Thermal Stress and Low-Cycle Fatigue,Mc Grawhill,New York,1981,187-191.
[13] Bela I. Sandor Fundamentals of Cyclic Stress and Strain,The University of Wisconsin Press,1972.
[14] 何世禹,李瑛,刘剑虹.金属学报,1990,26(4):A292-295.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金资助项目(59972104)
{{custom_fund}}