研究了适用于IC6合金的NiCoCrAlY涂层在制造过程中的修复对涂层本身及IC6合金基体的显微组织和力学性能的影响。结果表明,与原始态涂层相似,修复态涂层通过扩散层与基体紧密结合,涂层/基体界面处没有任何孔洞和裂缝,各元素在涂层、基体之间存在明显的浓度梯度。而且涂层修复对IC6合金的显微组织和力学性能均没有明显影响。经过1100℃/90MPa持久试验后,原始态涂层和修复态涂层与IC6合金基体之间都发生了明显的互扩散,涂层中Mo含量上升到16%(质量分数,下同)左右,而Cr和Co含量下降至5%左右,但涂层仍然与合金基体结合紧密。因此,NiCoCrAlY涂层在制造过程中的修复是可行的。
Abstract
The effect of NiCoCrAlY coating repair during its preparation on coating itself and microstructure and mechanical properties of Ni3Al base alloy IC6 was studied.The results indicate that the repaired coating connects to base alloy IC6 compactly through diffusion layer, without any cavity and crack at the coating/matrix interface, similar to original coating and there is obvious concentration gradient of all elements between coating and matrix.And coating repair has no obvious effect on the mechanical properties of alloy IC6.After 1100℃/90MPa stress rupture test, the obvious interdiffusion happens between the repaired coating and base alloy, in both of original and repaired coatings, the content of Mo in the coating is up to about 16%(mass fraction), and the content of Cr and Co decreases to about 5%(mass fraction).The coatings still have good adherence to the base alloy.Therefore, the NiCoCrAlY coating repair is feasible.
关键词
NiCoCrAlY涂层 /
修复 /
互扩散 /
Ni3Al基合金
{{custom_keyword}} /
Key words
NiCoCrAlY coating /
repair /
interdiffusion /
Ni3Al base alloy
{{custom_keyword}} /
中图分类号:
TG174.444
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Y F Han, Z P Xing, M C Chaturvedi.Second Inter Symp on Structural Intermetallics[C].USA:TMS.1997.713.
[2] Y F Han, Z P Xing, M C Chaturvedi, Q Xu.Mater Sci Eng A, 1997, 239A:871.
[3] W Beele, N Czech, W J Quadakkers, W Stamm.Surf Coat Technol, 1997, 94/95:41.
[4] J Kameda, T E Bloomer, Y Sugita, A Ito, S Sakurai.Mater Sci Eng A, 1997, 229A:42.
[5] 李树索,肖程波,宋尽霞,韩雅芳.第八届全国青年材料学术会议论文集[C].2001.165.
[6] L Wen, R Huang, J Song, Y Han.Fourth Pacific Rim International Conference on Advanced Materials and Processing (PRICM 4)[C].Japan:The Japan Institute of Metals,2001.2715.
[7] D F Bettridge, R G Ubank.Mater Sci Tech, 1986, 2:232.
[8] C G Munger, Materials Performance, 1980, 19(2):7.
[9] V Viswanathan, R Frischmuth, D Gandy.Power Engineering, 1999, 103(1):20.
[10] 美国国家材料咨询委员会所属涂层委员会编,金石译.高温抗氧化涂层[M].北京:科学出版社,1980.
[11] B Wang, R F Huang, G H Song, J Gong, C Sun, L S Wen and Y F Han.Oxidation of Metals, 2001,56(1/2):1.
[12] Y F Han, S H Li, Y Jin, M C Chaturvedi.Mater Sci Eng A, 1995, 192/193A:899.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}