从NiTi形状记忆合金(Shape MemoryAlloy,SMA)性能评价和智能结构研究的角度出发,分析了SMA的应力、应变、温度、电阻以及相变之间的关系.通过分阶段和不同变量组合,对SMA的力学、热学和电学特性进行了实验研究.建立了拉伸状态下形状各异的应力-应变曲线通用物理模型,并进行了数值模拟.结果表明:SMA在马氏体相变,特别是R相变时出现一系列物理、力学性质的异常变化,其本构关系呈现高度非线性;数值模拟结果与实验结果较好地吻合;采用应力、应变、电阻、温度四坐标同步测量是对SMA性能评价的重要方法和有效手段.
Abstract
The important relationships among stress, strain, temperature, electrical resistance and phase transformation of NiTi shape memory alloy (SMA) was synthetically tested and analyzed by various combinations of parameters. A physical model was established to describe the experimental stressstrain curves of SMA, and numerical simulations were performed. Several testing methods were proposed for the need of material evaluations and smart structure developments. Experimental results show that a series of unusual changes on physical and mechanical properties of SMA occur when martensitic, especially R(rhombohedral), phase transformation emerge, and that the constitutive relationship of SMA is highly non-linear. Numerical results are in good agreement with experimental dataIt is an important and effective method to measure stress, strain, electrical resistance and temperature synthetically for studying properties and structural variations of SMA.
关键词
形状记忆合金 /
性能评价 /
物理模型 /
同步测量 /
数值模拟
{{custom_keyword}} /
Key words
shape memorg alloy /
property evaluation /
physical model /
synthetical measurement /
numerical simulation
{{custom_keyword}} /
中图分类号:
TB381
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Rogers C A. The pawn of new materials age[J]. Journal of Intelligent Material Systems and Structures, 1993, 4(1):4-12.
[2] 姚康德,许美萱.智能材料——21世纪的新材料[M].天津:天津大学出版社,1996.
[3] 陶宝祺.智能材料结构[M].北京:国防工业出版社,1997.
[4] Tanaka K. A thermomechanical sketch of shape memory effect:one-dimensional tensile behavior[J]. Res Mechanica, 1986, 18:251-263.
[5] Liang C, Rogers C A. One-dimensional thermomechanical constitutive relations for shape memory materials[J]. J of Intell Mater Syst and Struct, 1990, 1:207-234.
[6] Brison L C, Huang M S. Simplifications and comparisons of shape memory alloy constitutive modols[J]. J of Intell Mater Syst and Struct, 1996, 7:108-118.
[7] Wei Z G, Sandstrom R, Miyazaki S. Shape memory materials and hybrid composites for smart systems. Part II:Shape-memory hybrid composites[J]. Journal of Materials Science, 1998, 33(15):3763-3783.
[8] Song Guquan, Sun Qingping, Cherkaoui M. Role of microstructure in the thermomechanical behaviour of SMA composites[J].Transactions of the ASME, 1999, 121(1):86-92.
[9] Bo Z, Lagoudas D C. Thermomechanical modeling of polycrystalline SMAs under cyclic loading. Part I:Theoretical Derivations[J]. International Journal of Engineering Science, 1999, 37(9):1089-1140.
[10] Birman V. Review of mechanics of shape memory alloy structures[J]. Applied Mechanics Review, 1997, 50(11):629-645.
[11] Yasubumi Furuya. Design and material evaluation of shape memory composites[J]. Journal of Intelligent Material Systems and Structures, 1996, 7:71.
[12] Airoldi G, Pozzi M. Electrical Transport Properties of Shape Memory Alloys under a Stress State[J]. Journal of Engineering Materials and Technology, Transactions of the ASME, 1999, 121(1):108-111.
[13] Carvallo M, Pu Z J, Wu K H. Variation of electrical resistance and the elastic modulus of shape alloys under different loading and temperature conditions[J]. J of Intell Mater Syst and Struct, 1995, 6(7):557-565.
[14] 胡自力.含损伤SMA增强智能复合材料的性能表征与损伤分析[D].南京航空航天大学博士学位论文,2003.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
航空科学基金(01G52041);国家自然科学基金(10072026)资助项目
{{custom_fund}}