采用有限元方法模拟了搅拌摩擦焊接过程中材料的流动行为以及残余应力的分布情况,结果显示,材料的切向流动构成搅拌头周围材料流动的主要形式,并且搅拌头周围材料的运动有较为明显的分层现象,随着搅拌头直径的不断增加,这种分层流动的现象变得更加明显.纵向残余应力的最大值产生在热影响区的边界,残余应力呈现典型的双峰特征,搅拌头直径的增加会导致高水平拉伸残余应力的分布区域变大.
Abstract
Finite element method was used to study the material behavior and the residual stress distributions during the friction stir welding process.The results show that the flow of the material in the tangent direction takes the main contributions to the movement of the material in the friction stir welding process.A fluidized bed of material flow comes into being around the pin.With the increase of the pin’s diameter,the laminar flow becomes much easier to be observed. The maximum of the longitudinal residual stress occurs in the boundary of the heat affected zone.The double peak feature of the longitudinal residual stress can be found.The region of the large residual stress becomes wider when the diameter of pin is increased.
关键词
搅拌摩擦焊接 /
残余应力 /
有限元 /
尺度效应
{{custom_keyword}} /
Key words
friction stir welding /
residual stress /
finite element method /
scale effect
{{custom_keyword}} /
中图分类号:
TG404
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] DENG X M,XU S W.Two dimensional finite element simulation of material flow in the friction stir welding process[J].Journal of Manufacturing Process,2004,6(2):125-133.
[2] ZHU X K,CHAO Y J.Numerical simulation of transient temperature and residual stress in friction stir welding of 304L stainless steel[J].Journal of Materials Processing Technology,2004,146:263-272.
[3] SANTIAGO D H,LOMBERA G,URQUIZA S,et al.Numerical modeling of welded joints by the friction stir welding process[J].Materials Research,2004,7(4):569-574.
[4] 王大勇,冯吉才.搅拌摩擦焊接三维流动模型[J].焊接学报,2004,25(4):46-50.
[5] 栾国红,NORTH T H,郭德伦,等.铝合金搅拌摩擦焊接头行为分析[J].焊接学报,2002,23(6):62-66.
[6] LI N,PAN T Y,COOPER R P,et al.Magnesium Technology[C].Warrendale:The Minerals,Metals & Materials Society,2004.
[7] BROWN W F,MINDLIN H J,HO C Y.Aerospace structural metals handbook[M].Indiana,USA:CINDAS/Purdue University,1993.
[8] TANG W,GUO X,MCCLURE J C,et al.Heat input and temperature distribution in friction stir welding[J].Journal of Materials Processing and Manufacturing Science,1998,7(2):163-172.
[9] GOLEGROVE P,PAINTER M,GRAHAM D,et al.Proceedings of the Second International Symposium on Friction Stir Welding[C].Cambridge:TWI,2000.
[10] MCCLURE J C,FENG Z,TANG W,et al.Proceedings of the 5th International Conference on Trends in Welding Research[C].Pine Mountain:ASM International,1999.
[11] XU S W,DENG X M.Proceedings of the 21st Southeastern Conference on Theoretical and Applied Mechanics XXI[C].Florida:ASME International,2002.
[12] 张昭,陈金涛,张洪武.第十一届全国焊接会议:第二集[C].上海:中国机械工程学会焊接学会,2005.
[13] STARON P,KOCAK M,WILLIAMS S,et al.Residual stress in friction stir welded Al sheets[J].Physica B,2004,350:491-493.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金资助项目(10225212,10421002,10302007);长江学者和创新团队发展计划项目;国家基础性发展规划项目资助课题(2005CB321704)
{{custom_fund}}