利用高速电弧喷涂技术在45钢基体上制备了FeCrBSiMnNbY系非晶纳米晶涂层.采用扫描电镜、能谱分析仪、透射电镜和X射线衍射仪等设备对涂层的组织结构进行了表征,着重分析了非晶纳米晶的形成机制,并利用湿砂橡胶轮式磨损试验机对涂层的磨损性能进行了研究.结果表明:涂层的组织主要由非晶相和α(Fe,Cr)相纳米晶组成;α(Fe,Cr)相纳米晶均匀分布于非晶基体内.涂层的组织均匀,结构致密,平均孔隙率为1.7%;非晶纳米晶涂层具有较高的硬度和良好的耐磨性,其失效机制主要为脆性断裂机制.
Abstract
FeCrBSiMnNbY amorphous/nanocrystalline coatings were fabricated on 45 steel substrates by high velocity arc spraying process.The microstructure of the coating was characterized using transmission electron microscopy(TEM),X-ray diffraction(XRD)and scanning electron microscopy(SEM)equipped with energy dispersive X-ray analysis(EDXA).The formation mechanism of amorphous/nanocrystalline was discussed.The wear behavior of the coating and the substrate was evaluated with wet sand rubber wheel abrasion tester at ambient temperature.The results show that the microstructure of the coating consists of amorphous and α(Fe,Cr)nanocrystalline.The nanocrystalline grains with a size of 30-60nm are homogenously dispersed in the amorphous matrix.The coating is fully dense with low porosity of 1.7%.The amorphous/nanocrystalline coating has high hardness and excellent wear resistance.The mainly failure mechanism of the coatings is brittle breaking and fracture mechanism.
关键词
非晶 /
纳米晶 /
涂层 /
组织结构 /
耐磨性
{{custom_keyword}} /
Key words
amorphous /
nanocrystalline /
coating /
microstructure /
wear resistance
{{custom_keyword}} /
中图分类号:
TG174.442
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] SCHUH C A,HUFNAGEL T C,RAMAMURTY U.Mechanical behavior of amorphous alloys[J].Acta Mater,2007,55:4067-4109.
[2] 樊自拴,孙冬柏,俞宏英,等.等离子喷涂制备铁基非晶-纳米复合涂层[J].北京科技大学学报,2005,27(5):582-585.
[3] WU Y,LIN P,XIE G,et al.Formation of amorphous and nanocrystalline phases in high velocity oxy-fuel thermally sprayed a Fe-Cr-Si-B-Mn alloy[J].Mater Sci Eng A,2006,430:34-39.
[4] 郭金花,陆曹卫,倪晓俊,等.电弧喷涂Fe 基非晶硬质涂层的组织及性能研究[J].中国表面工程,2006,19(5):45-48.
[5] 傅斌友,贺定勇,蒋建敏,等.电弧喷涂含非晶相铁基涂层的研究[J].材料热处理学报,2008,29(3):159-162.
[6] VERDON C,KARIMI A,MARTIN J L.A study of high velocity oxy-fuel thermally sprayed tungsten carbide based coatings.Part 1:Microstructures[J].Mater Sci Eng A,1998,246:11-24.
[7] AJDELSZTAJN L,JODIN B,RICHER P,et al.Cold gas dynamic spraying of iron-base amorphous alloy[J].J Therm Spray Technol,2006,15(4):495-500.
[8] NERBERY A P,GRANT P S,NEISER R A.The velocity and temperature of steel droplets during electric arc spraying[J].Surf Coat Technol,2005,195:91-101.
[9] INOUE A,ZHANG T,MASUMOTO T.Al-La-Ni amorphous alloys with a wide supercooled liquid region[J].Mater Trans JIM,1989,30:965-972.
[10] BOER F R DE,BOOM R,MATTENS W C M,et al.Cohesion in Metals Transition Metal Alloys[M].Netherlands:Elsevier Science Publishing Company Inc,1989.217-399.
[11] 胡杰,肖于德,黎文献,等.快速凝固AlNiCuNd 金属玻璃在纳米尺度上的初始晶化行为[J].中南大学学报,2004,35(6):925-930.
[12] 樊自拴,潘继岗,孙冬柏,等.热处理对铁基非晶合金涂层相组成及磨损性能的影响[J].材料热处理学报,2008,29(1):120-123.
[13] 刘家浚.材料磨损原理及其耐磨性[M].北京:清华大学出版社,1993.176.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金重点项目(50735006);装备再制造技术国防科技重点实验室基金资助项目(914OC85020508OC85);清华大学先进成形制造教育部重点实验室开放基金资助项目(2008002)
{{custom_fund}}