镍基合金材料塑性对应力腐蚀裂纹尖端应力应变场影响的研究

薛河, 赵丹, 彭群家, 唐伟, 方秀荣, 龚晓燕

材料工程 ›› 2011, Vol. 0 ›› Issue (5) : 17-20,25.

PDF(1158 KB)
PDF(1158 KB)
材料工程 ›› 2011, Vol. 0 ›› Issue (5) : 17-20,25.
论文

镍基合金材料塑性对应力腐蚀裂纹尖端应力应变场影响的研究

  • 薛河1, 赵丹1, 彭群家2, 唐伟1, 方秀荣1, 龚晓燕1
作者信息 +

Effects of Material Plasticity of Nickel Base Alloy on Stress-strain Field at Tip of Stress Corrosion Cracking

  • XUE He1, ZHAO Dan1, PENG Qun-jia2, TANG Wei1, FANG Xiu-rong1, GONG Xiao-yan1
Author information +
文章历史 +

摘要

为了解材料塑性对高温水环境下核电关键结构材料应力腐蚀裂纹扩展的影响,利用大型非线性有限元软件,对镍基合金中由氧化膜和基体金属构成的应力腐蚀裂纹尖端应力应变场进行了分析,得出了材料屈服应力对应力腐蚀裂纹尖端应力应变场的影响规律。结果表明:在同样的外载条件下,随着材料屈服应力的增大,裂尖基体金属的应力增大而塑性应变减小;而氧化膜区的应力和塑性应变却同时减小。

Abstract

To understand the effect of material plasticity on stress corrosion cracking(SCC) growth in structural materials at high temperature water environments of nuclear power plants,the stress-strain field at the tip of a SCC constituted by base metal and oxide film in nickel base alloy was analyzed by elastic plastic finite element method(EPFEM) in a commercial FEM code.The effects of yield stress on the stress-strain field at the tip of the SCC were obtained.The results show that the stress in the base metal zone increases as the material yield stress increases and the plastic strain in base metal zone decreases as the material yield stress increases at the crack tip,and show that both the stress and the plastic strain in the oxide film decreases as the material yield stress increases at the crack tip.

关键词

镍基合金 / 应力腐蚀裂纹 / 屈服应力 / 氧化膜 / 应力应变 / 有限元

Key words

nickel base alloy / stress corrosion cracking / yield strength / oxide film / stress and strain / finite element method

引用本文

导出引用
薛河, 赵丹, 彭群家, 唐伟, 方秀荣, 龚晓燕. 镍基合金材料塑性对应力腐蚀裂纹尖端应力应变场影响的研究[J]. 材料工程, 2011, 0(5): 17-20,25
XUE He, ZHAO Dan, PENG Qun-jia, TANG Wei, FANG Xiu-rong, GONG Xiao-yan. Effects of Material Plasticity of Nickel Base Alloy on Stress-strain Field at Tip of Stress Corrosion Cracking[J]. Journal of Materials Engineering, 2011, 0(5): 17-20,25
中图分类号: O346.1   

参考文献

[1] CHOPRA O K,CHUNGA H M,KASSNER T F,et al.Current research on environmentally assisted cracking in light water reactor environments[J].Nuclear Engineering and Design,1999,194(1-2):205-223.
[2] XUE H,SHOJI T.Quantitative prediction of EAC crack growth rate of sensitized type 304 stainless steel in boiling water reactor environments based on EPFEM[J].Transactions of the ASME-Journal of Pressure Vessel and Technology,2007,129(3):254-258.
[3] 卢建树,王保峰,张九渊.高温水中不锈钢和镍基合金应力腐蚀破裂研究进展[J].核动力工程,2001,22(3):259-263.
[4] ANDRESEN P L,GOTT K,NELSON J L.Stress corrosion cracking of sensitized type 304 stainless steel in 288℃ water:a five laboratory round bobbin[A].Proceedings of the 9th International Symposium on Environmental Degradation of Material in Nuclear Power Systems-Water Reactors[C].Warrendale,Pennsylvania:Publication of Minerals,Metals & Materials Society,1999.423-433.
[5] XUE H,SATO Y,SHOJI T.Quantitative estimation of the growth of environmentally assisted cracks at flaws in light water reactor components[J].Transactions of the ASME-Journal of Pressure Vessel and Technology,2009,131(1):61-70.
[6] LAGOUDAS D C,ENTCHEV P,TRIHARJANTO R.Modeling of oxidation and its effect on crack growth in titanium alloys[J].Computer Methodsin Applied Mechanics and Engineering,2000,183(1-2):35-50.
[7] ASTM standard E399-90,standard test method for plane strain fracture toughness of metallic materials[S].
[8] 石亦平,周玉蓉.ABAQUS有限元分析实例详解[M].北京:机械工业出版社,2006.198-204.
[9] XUE H,OGAWA K,SHOJI T.Effect of welded mechanical heterogeneity on local stress and strain in stationary and growing crack tips[J].Nuclear Engineering and Design,2009,236(5):628-640.
[10] KUMAR V,GERMAN M D,SHIH C F.An engineering approach for elastic-plastic fracture analysis[A].EPRI/NP1931[R].Palo Alto,California:Electric Power Research Institute,1981.
[11] TERACHI T,FUJI K,ARIOKA K.Microstructure characterization of SCC crack tip and oxide film for SUS 316 stainless steel in simulated PWR primary water at 320℃[J].Nuclear Science and Technology,2005,42(2):225-232.
[12] PENG Q J,KWON J,SHOJI T.Development of a fundamental crack tip strain rate equation and its application to quantitative prediction of stress corrosion cracking of stainless steels in high temperature oxygenated water[J].Journal of Nuclear Materials,2004,324(1):52-61.

基金

国家自然科学基金项目(50875207,11072191);陕西省教育厅专项基金项目(09JK591)
PDF(1158 KB)

953

Accesses

0

Citation

Detail

段落导航
相关文章

/