采用Gleeble-1500热模拟试验机对3003铝合金进行变形温度为300~500℃、应变速率为0.01~10.0s-1的高温等温压缩实验,由真应力-真应变曲线计算应变硬化速率,并采用截线法测量热压缩后平均晶粒尺寸,结果表明:3003铝合金动态再结晶临界应变εc随着Z参数的增大而提高,合金发生动态再结晶的临界条件为:ε>εc=7.28×10-5 Z0.1661;动态再结晶的平均晶粒尺寸随温度的升高、应变速率的减小而增大,其关系为:lndave=-0.0824lnZ+4.9532;在实验条件下,该合金具有正的应变速率敏感性,随变形温度的降低和应变速率的增大,合金进入稳态流变阶段时所对应的真应力值逐渐增大,并且峰值应力随动态再结晶平均晶粒尺寸的减小而增大,符合Hall-Petch关系:lnσm=-0.9378lndave+6.5232.
Abstract
The 3003 aluminum alloy was deformed by isothermal compression in the range of deformation temperature 300-500℃ at strain rate 0.01-10.0s-1 using Gleeble-1500 thermal simulator.The strain-hardening rate could be obtained from true stress-true strain curves,and the recrystallization average grain size was measured using the intercept method.The results show that the critical strain εc increases with parameter Z increasing,the critical conditions for onset of dynamic recrystallization(DRX) is ε>εc=7.28×10-5Z0.1661.The average recrystallization grain size increases as deformation temperature increases and the strain rate decreases,which can be described as lndave=-0.0824lnZ+4.9532.The investigated alloy is sensitive to positive strain rate under the experimental conditions.The true stress increases as the deformation temperature decreases and the strain rate increases.The peak stress increases with the average recrystallization grain size decreasing,which meets with the law of Hall-Petch:lnσm=-0.9378lndave+6.5232.
关键词
3003铝合金 /
应变硬化速率 /
动态再结晶 /
临界应变 /
平均晶粒尺寸
{{custom_keyword}} /
Key words
3003 aluminum alloy /
strain-hardening rate /
dynamic recrystallization /
critical strain /
average gain size
{{custom_keyword}} /
中图分类号:
TG146.21
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 潘复生,张丁非.铝合金及应用[M].北京:化学工业出版社,2006.
[2] 霍庆利,何树民,张晶,等.3003-O铝合金深冲带材退火制度的研究[J].轻合金加工技术,2007,35(10):22-23.
[3] 曹金荣,刘正东,程世长,等.应变速率和变形温度对T122耐热钢流变应力和临界动态再结晶行为的影响[J].金属学报,2007,43(1):35-40.
[4] 王斌,易丹青,方西亚,等.ZK60镁合金高温动态再结晶行为的研究[J].材料工程,2009,(11):45-50.
[5] 赵欣,张奎,李兴刚,等.Mg-Y-Nd-Gd-Zr合金动态再结晶实验研究[J].稀有金属,2008,32(5):657-573.
[6] POLIAK E I,JONAS J J.Initiation of dynamic reerystallization in constant strain rate hot deformation[J].ISIJ Int,2003,43(5):684-691.
[7] 傅高升,陈文哲,钱匡武.高效铝熔体综合处理技术及其效果[J].中国有色金属学报,2002,12(2):269-274.
[8] POLIAK E I,JONAS J J.A one-parameter approach to determining the critical conditions for the initiation of dynamic reerystallization[J].Acta Mater,1996,44(1):127-136.
[9] KIM S I,YOO Y C.Prediction of dynamic recrystallization behaviour of AISI type 4140 medium carbon steel[J].Mater Sci Technol,2002,18(2):160-164.
[10] MANONUKUL A,DUNNE F P E.Initiation of dynamic recrystallization under inhomogeneous stress states in pure copper[J].Acta Mater,1999,47(17):4339-4354.
[11] 黄光胜,汪凌云,黄光杰,等.AZ31镁合金高温本构方程[J].金属成形工艺,2004,24(2):41-44.
[12] MYSHLYAEV M M,MCQUEEN H J,MWEMBELA A,et al.Twinning,dynamic recovery and recrystallization in hot worked MgAl-Zn alloy[J].Mater Sci Eng:A,2002,337(1-2):121-133.
[13] MWEMBELA A,KONOPLEVA E B,MCQUEEN H J.Microstructural development in Mg alloy AZ31 during hotworking[J].Scripta Materialia,1997,37:1789-1795.
[14] 程羽,郭胜武,郭成,等.变形条件对SiCp/2014Al复合材料力学行为和晶粒度的影响[J].锻压技术,2000,(1):3-6.
[15] 马柏生,李友荣,魏元春.形变参数对中碳鉻镍钼钒钢奥氏体晶粒的影响[J].南京理工大学学报,1998,22(4):309-312.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
福建省自然科学基金资助计划项目(E0610004);福建省教育厅A类科技项目资助(JA08249)
{{custom_fund}}