利用动电位极化、电化学阻抗谱(EIS)和激光电子散斑干涉(ESPI)研究了3.5%NaCl溶液中,SO42-浓度对304不锈钢点蚀行为的影响。使用0.3V(vs SCE)极化条件下的计时电流法结合ESPI确定了点蚀诱导时间。结果表明:当SO42-浓度为0.5%时,不锈钢的耐蚀性最差;当SO42-浓度低于1%时,不锈钢的耐蚀性较不存在SO42-时的耐蚀性差;当SO42-浓度高于1%时,不锈钢的耐蚀性较不存在SO42-时的耐蚀性好。在3.5%NaCl+0.5%Na2SO4溶液中,点蚀诱导时间是4s,在3.5%NaCl溶液中和3.5%NaCl+4%Na2SO4溶液中点蚀诱导时间分别是9s和94s。
Abstract
Effect of SO42- concentration on 304 stainless steel pitting corrosion in 3.5%NaCl solution was investigated by means of dynamic potential polarization, electrochemical impedance spectroscopy (EIS) and electronic speckle pattern interferometer (ESPI). The pitting induction time τ under 0.3V (vs SCE) polarization was detected by means of ESPI and chronoamperometry. The results showed that the stainless steel corrosion resistance was the worst when the SO42- concentration was 0.5%. When the SO42- concentration was below 1%, the corrosion resistance was worse than that having no SO42-. When the SO42- concentration was beyond 1%, the corrosion resistance was better. The pitting induction time τ of the 304 stainless steel were 4s, 9s and 94s in 0.5%NaCl+0.5%Na2SO4 solution, 3.5%NaCl solution and 3.5%NaCl+4%Na2SO4 solution respectively.
关键词
304不锈钢 /
点蚀 /
激光电子散斑干涉技术 /
硫酸根离子
{{custom_keyword}} /
Key words
304 stainless steel /
pitting /
ESPI /
SO42-
{{custom_keyword}} /
中图分类号:
TG174
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 周本省. 工业冷却水系统中金属的腐蚀与防护[M]. 北京: 化学工业出版社, 1993.25.
[2] 刘道新. 材料的腐蚀与防护[M]. 西安: 西北工业大学出版社, 2006.119-120.
[3] SHERBINI E E, REHIM S S. Pitting corrosion of zinc in Na2SO4 solutions and the effect of some inorganic inhibitors[J].Corros Sci, 2000, 42(5): 785-789.
[4] 解群, 葛红花. 冷却水中SO42-对不锈钢管的缓蚀作用[J]. 上海电力学院学报,2002,2(6): 33-36.
[5] LEE W J, PYUN S I. The effect of prior Cl- ion incorporation into native oxide film on pure aluminium in neutral chloride solution on pit initiation[J]. Corrosion Science, 2001, 43(2): 353-363.
[6] PETZING J N, TYRER J R. Recent development and applictions in electronic speckle pattern interferometry [J]. The Journal of Strain Analysis for Engineering Design ,1998, 33(2):153-169.
[7] HABIB K,MUHANA K. Holographic interferometry as electrochemical emission spectroscopy of a carban steel in 5-20 ppm TROS C-70 inhibited seawater[J]. Optics and Lasers in Engineering, 2002,38:577-588.
[8] HABIB K,BOURESLI K.Detection localizied corrosion of stainless steels by optical interferometry[J]. Electrochemical Aata, 1999,44(25): 4635-4641.
[9] 王梅丰, 杜楠, 李晓刚,等. 利用电子散斑干涉技术研究45碳钢在NaHCO3+NaCl体系中的早期点蚀行为[J].中国腐蚀与防护学报, 2009, 29(3): 210-214.
[10] WANG M F, LI X G, DU N, et al. Direct evidence of initial pitting corrosion[J]. Electrochemistry Communications,2008, 10(7): 1000-1004.
[11] DU Nan, LIU Gang,ZHAO Qing. Monitoring initial pitting behaviors of 30CrMnSi steel in NaHCO3-NaCl solution by ESPI and electrochemical noise[J].Material Science, 2008, 2(3): 326-329.
[12] WANG M F. Study on initial pitting corrosion behaviors and mechanisms of metals using electronic speckle pattern interferometry. Beijing : University of Science and Technology Beijing, 2008.
[13] 李狄. 电化学原理[M]. 北京: 北京航空航天大学出版社, 2008.275-276.
[14] WU J W, LI X G, DU C W, et al. Effects of Cl- and SO42- ions on corrosion behavior of X70 steel [J]. Journal of Materials Science and Technology, 2005, 21(1): 28-32.
[15] 胡丽华, 杜楠, 王梅丰,等. 1Cr18Ni9Ti不锈钢在酸性NaCl 溶液中的点蚀电化学特征[J]. 失效分析与预防, 2006, 1(3): 6-9.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}