对EA4T型高速列车车轴钢棒状旋转弯曲疲劳试样实验段磨削加工后进行了表面超声滚压处理。观察了处理前后试样的表面形貌及表层微观组织,测量了处理前后试样的表面粗糙度、表层硬度及表层残余应力。利用旋转弯曲疲劳实验得到处理前后试样的疲劳极限。结果表明:表面超声滚压处理后,试样的疲劳极限由352MPa提高到401MPa。疲劳极限的提高主要由于表面超声滚压处理后试样表面粗糙度降低、表层强度及残余压应力增加。
利用原子力显微镜、显微硬度仪和摩擦磨损仪等测试方法研究表面机械冲击形变和稳定化热处理诱发Cu30Ni合金的显微组织结构变化和摩擦磨损性能。结果表明:与原始试样相比,机械冲击形变诱发非稳定晶界组织结构形成,稳定化热处理促进细化组织结构的非稳定晶界向稳定或亚稳定晶界转变,导致显微硬度从93HV提高到297HV,磨损速率从4.2mm3/m降低到0.41mm3/m,摩擦因数μ从0.35降低到0.32,且在机械冲击形变和稳定化热处理的试样磨痕形貌中未观察到显微裂纹存在。
以碳毡为预制体,将SiC粉末、酚醛树脂等搅拌成混合浆液,采用真空吸浆法制备C/SiC复合材料,测定其密度、孔隙率和力学强度,利用扫描电镜(SEM)研究其断裂面的微观结构并分析失效机制。结果表明:真空吸浆两次后C/SiC复合材料的致密性、力学强度随着浆料中SiC含量的增加均呈先增加后减小的变化趋势,其裂纹扩展过程包括纤维/基体脱粘、纤维桥连、纤维摩阻、裂纹偏转、纤维拔出等几种增韧增强机制。综合比较,当浆料中SiC含量为25%(质量分数)时,其致密性和力学性能最好,密度为1.31g/cm3,孔隙率为15.10%,抗弯强度和抗压强度分别达84.04MPa和74.22MPa,材料具有较好的韧性。
以3,3',4,4'-联苯四酸二酐(sBPDA)和2,2'-二甲基-4,4'-二氨基联苯胺(DMBZ)为聚合单体,八(氨基苯基)聚倍半硅氧烷(OAPS)为交联剂,SiO2纳米粒子为填料,采用超临界二氧化碳干燥工艺制备了一系列聚酰亚胺(PI)/SiO2纳米复合气凝胶(CPIA-SiO2-0~CPIA-SiO2-7)。研究表明:SiO2纳米粒子的引入对PI气凝胶的耐热性能未产生显著的影响。然而,随着SiO2纳米粒子含量的增加,PI气凝胶的孔隙率从89.6%逐渐降低至79.4%,BET表面积也随之从425.5m2/g降低至380.2m2/g,纳米泡孔孔径分布呈现出变宽的趋势。SiO2的引入显著提高了PI气凝胶的抗原子氧侵蚀能力,含量为7%(质量分数,下同)的PI/SiO2复合气凝胶CPIA-SiO2-7的原子氧侵蚀率(2.6%)仅为不含SiO2气凝胶CPIA-SiO2-0的原子氧侵蚀率(12.3%)的1/5左右。
对AerMet100超高强度钢淬火后深冷处理,然后在不同温度下回火,利用OM,SEM,TEM对处理后的组织进行观察。采用分离式Hopkinson压杆研究不同热处理工艺对其动态力学性能的影响规律。结果表明:深冷处理可降低残余奥氏体的含量,提高材料的动态塑性,改善材料的综合性能;在高应变率(1000~4200s-1)下,与准静态相比,材料表现出明显的应变率硬化效应。随着回火温度的升高,材料的动态压缩强度呈现出先升高后降低的趋势,在482℃时出现峰值,约为2800MPa。在动态加载条件下,材料的断裂形式均是剪切断裂。
对环烷酸腐蚀控制机制分析推测高温高流速下lnv与 (-1/T)间的规律。对API581中Cr合金钢的腐蚀数据进行分析及模拟实验。结果表明:lnv-(-1/T)之间存在线性规律,应用lnv-(-1/T)线性规律可以较准确预测不同温度下Cr合金钢的平均环烷酸腐蚀速率。根据Fluent模拟得到不同条件下腐蚀试样表面的湍流分布,将试样表面湍流分布与表面3D腐蚀深度关联后可明确湍流强度会显著影响局部腐蚀深度。在2%弱湍流区,局部最大腐蚀深度与总平均腐蚀深度比值仅为1.56,但在8%湍流强度下,两者比值可大于3.7,影响程度随湍流强度的增加呈曲线快速提高。
在不同温度下对压铸AM60B母材进行焊前热处理,待冷至室温后对其实施不填丝GTAW重熔焊接。焊后用扫描电镜对焊缝截面的气孔分布及形貌进行观察,并用粒径分析软件Nano measurer 1.2测量焊缝中气孔尺寸,用基于Matlab二次开发的图像分析程序识别和计算焊缝气孔率。结果表明:焊缝气孔主要分布在焊缝熔融区及熔合线附近;与未经焊前热处理母材对应的焊缝相比,经焊前热处理后所得焊缝中的气孔率及气孔尺寸均降低;随着焊前热处理温度升高,焊后气孔率及气孔尺寸均逐渐增加。
对面心立方(FCC)结构的Al0.3CoCrFeNi高熵合金进行不同应变量的高压扭转实验,利用维氏硬度仪、电子背散射衍射、X射线衍射仪以及透射电镜系统分析变形引起的组织结构演变。结果表明:高压扭转过程中合金晶体结构并未发生改变,仍然保持为FCC结构,但引发其晶粒纳米化,平均晶粒尺寸达到30nm。晶粒细化主要是通过孪晶(包含初次孪晶与二次孪晶)、去孪晶(包含初次去孪晶与二次去孪晶)以及孪晶界分割晶粒的过程实现。孪晶和随后去孪晶的竞争作用导致孪晶宽度先减小后增大,初次孪晶和二次孪晶的最小宽度分别为2.7nm和0.9nm。
以锆盐为主要原料,实现常温下对AA6063铝合金的无铬化学转化处理。采用SEM,XRD及电化学测试研究了转化膜的性能。结果表明:锆膜生长是以针状小单元结构组织成圆形较大的单元,再发展为均匀的黑灰色转化膜;锆膜厚约8.79μm,主要由KZrF3(OH)2·H2O及KZrF3O·2H2O组成;锆膜耐腐蚀性能比铝合金提高了数百倍,与铬酸盐转化膜相当;锆膜的耐腐蚀性能与后处理工艺有一定关系,膜层结构等效电路为R1+C2/R2+M3。
结合离子交换-高温烧结法,由钛酸钠纳米线制备了TiO2纳米线。通过XRD、Uv-vis漫反射和SEM等测试手段,探讨离子交换时间和高温烧结温度对制备TiO2纳米线的影响,并以甲基橙为目标污染物测试其光催化性能。结果表明:离子交换时间越长越有利于钛酸纳米线的形成,离子交换48h时钛酸钠纳米线基本转换成为钛酸纳米线;过低的烧结温度不利于TiO2纳米线的形成,烧结温度650℃时钛酸纳米线基本分解成为TiO2纳米线;钛酸钠纳米线几乎没有光催化性能,而TiO2纳米线具有很强的光催化性能。
利用有机胶体的黏附作用力改善待连接表面的界面张力,可为实现异种材料间的钎焊连接提供有利条件。以环氧树脂为黏性胶体,TiH2粉为活性元素源,AgCu共晶合金箔为钎料,将TiH2与环氧树脂混合后涂敷在SiO2f/SiO2复合材料表面,并在此表面进行钎料润湿实验。结果表明:胶体黏附力对钎料的润湿铺展具有促进作用。将此工艺用于钎焊连接,可实现SiO2f/SiO2复合材料、Cf/SiC复合材料以及Al2O3陶瓷与Invar合金的冶金致密连接。
研究了利用超声频谱能量对材料晶粒尺寸进行表征的方法。通过不同的热处理方式获得了不同晶粒尺寸的奥氏体不锈钢材料,再分别利用衰减系数法、声速法和频谱能量法对材料的晶粒尺寸进行表征。结果表明:频谱能量法得到的衰减系数与平均晶粒尺寸呈非线性关系,晶粒尺寸的预测误差在4%~15%以内,优于传统的分析方法,证明了新方法的有效性。
采用金相显微镜(OM)、扫描电镜(SEM)及能谱仪(EDS),结合拉伸力学性能与维氏硬度测试,研究了Al-5Ti-1B和Al-5Ti-0.2C晶粒细化剂对含Zr的7050铝合金铸态、均匀化态以及时效变形态的微观组织演变规律、第二相析出行为及力学性能的影响。结果表明:在7050合金中,Zr元素会使Al-5Ti-1B和Al-5Ti-0.2C均发生细化"中毒现象",降低晶粒细化剂的细晶效果;与Al-Ti-1B相比,增大Al-Ti-0.2C晶粒细化剂的添加量对于缓解"Zr中毒"现象,细化晶粒更有效,且能够提高合金强度与硬度,并使合金保持较好伸长率;同时,使用Al-5Ti-0.2C晶粒细化剂的7050合金,其第二相的分布较使用Al-5Ti-1B晶粒细化剂更加弥散、均匀。
基于虚拟裂纹闭合法对传统压痕法测试陶瓷材料断裂韧性的数值模型进行计算,以此为基础,分析比较传统压痕法的几种典型公式识别陶瓷材料断裂韧性的测试误差和所测材料的适用范围。结果表明:传统压痕法的Anstis公式较Evans公式,Lawn公式,JISR公式和Niihara公式,在材料比功0.3≤We/Wt≤0.45时所测断裂韧性值与理论计算值较为接近,其最大误差为12.9%,测试结果相对准确;当0.45<We/Wt≤0.7时,传统压痕法对陶瓷材料断裂韧性的测试误差随比功增加迅速增大,特别是当We/Wt=0.7时, Anstis公式,Evans公式,Lawn公式,JISR公式和Niihara公式所测断裂韧性值与理论计算值的最大误差分别为70%,148.5%,48.8%,98.7%和166.6%,在此材料比功范围内传统压痕法所测断裂韧性值误差较大。
采用场发射电子扫描显微镜(FESEM)和能谱仪(EDS)研究取向硅钢经过不同脱碳和保温时间后氧化层的演变规律及氧化层对后续渗氮的影响。结果表明:随脱碳时间的延长,氧化层逐渐变厚,期间伴随着片状SiO2向球状SiO2的转变,而且脱碳后增厚的氧化层更有利于渗氮的进行。氧化层的三层结构有利于渗氮的进行,其中层片状SiO2对渗氮起主要贡献,而球状SiO2层较厚时对渗氮有一定的抑制作用,且当氧化层全为球状SiO2时,渗入氮含量明显减少。氧化层的结构对渗氮后在铁基体中形成的氮化物形态也有影响。
研究温度和应力对7050铝合金预拉伸板中的超声纵波、偏振横波和临界折射纵波传播速度的影响,并分析不同频率临界折射纵波在梯度应力场中的传播规律。结果表明:温度对声速的影响大于声弹效应的影响;单轴拉伸时,沿轴向传播的临界折射纵波、平行轴向偏振的横波的速度降低,垂直应力方向偏振横波的速度升高,垂直轴向传播的纵波速度变化不大;临界折射纵波的频率越高,其所反映的应力越接近表面;声弹性法测得的应力是声传播路径上各点应力在超声波造成的质点振动方向上分量的综合反映。
作为近年发展起来的先进加工技术,电子束技术具有高能量密度、高真空度、可实现精确控制等优点,其在高温合金中的应用已受到广泛关注。本文对电子束技术在高温合金的制备以及加工领域的研究与应用进行了综述,包括高温合金的电子束成型制造、高温合金的电子束精炼、电子束焊接、表面改性以及高温合金的电子束物理气相沉积,指出了目前电子束技术面临的挑战,并对电子束技术在高温合金领域的发展前景进行了展望。