轻量化是航空航天领域永恒的主题。TiAl合金的密度为3.9~4.2 g/cm3,是镍基高温合金的1/2,其兼具轻质与耐热的优异性能,在航空航天装备热端构件制造方面具有重要的应用价值。然而,TiAl合金具有本征脆性,存在室温塑性低和热变形能力差等问题,造成加工与成形难度大、成本高,限制了其大规模应用。本文在回顾总结TiAl合金发展历程及应用现状的基础上,综述了TiAl合金的铸造、粉末冶金、热塑性成形、增材制造等热成形技术的研究进展,其中重点讨论了热塑性成形技术,包括包套挤压、等温锻造、近等温锻造和包套轧制等。现有塑性成形技术存在的问题主要是TiAl合金塑性差、成形难度高、成形效率低以及性能不足,今后TiAl合金塑性成形的发展方向应是高效率、低成本近净成形,同时提高材料的利用率和力学性能。
对6061铝合金坯料进行固溶淬火处理,固溶热处理制度为550 ℃/30 min,将淬火后合金在140 ℃下人工时效6~18 h,得到预强化(pre-hardening, PH)坯料。通过室温杯突实验与室温单轴拉伸实验评估6061铝合金预强化坯料的成形性能与力学性能,并进行帽形梁零件冲压试制实验,以验证该技术在工程应用中的可行性。结果表明:PH-12 h预强化铝合金坯料的屈服强度比O态铝合金坯料高186 MPa,抗拉强度比O态高215 MPa,而伸长率和杯突值与O态相近。PH-18 h预强化铝合金经10%变形后最高抗拉强度可达391 MPa,远高于T6态铝合金,说明预强化铝合金坯料兼具良好的强塑性。此外,使用预强化坯料成形的帽形梁零件的抗拉强度和屈服强度均高于T6态铝合金。
单点增量成形是一种柔性工艺,在航空航天领域有着广泛应用,尤其适用于定制化、小批量生产的构件。然而针对不同模型,适宜加工的工艺参数区间尚未明确,需要测试不同的参数。采用正交实验,进行多因素方差分析,讨论板材厚度、角度、层进量、进给速度和自转速度等参数对最大成形深度的影响。根据实验结果搭建基于Adaboost算法的回归模型,对6061铝合金薄板在100 mm成形直径下的成形深度进行预测。结果表明:单因素对最大成形深度的影响由大到小分别为:厚度、层进量、角度量、进给速度、自转速度,且在最快成形速度下获得的最大成形角度为70°,板料厚度为1 mm,层进量为0.2 mm,进给速度为2000 mm/min,自转速度为2000 r/min。此外,依据正交实验创建的回归模型具有高准确度,与Abaqus仿真结果及实际实验结果均对应,4组测试与仿真最大误差为4.24%,与实际成形最大误差值为-2.45%。
提出一种7075铝合金非等温固溶-锻造一体化热成形工艺。将固溶后铝合金直接放入温模中进行锻造,然后淬火并进行人工时效处理,通过构建温度-时间-性能(temperature-time-property,TTP)曲线,研究本工艺下入水温度和时效参数对7075铝合金微观组织和性能的影响,并结合机器学习对关键工艺参数进行优化匹配。结果表明:TTP曲线鼻端温度为315 ℃,合金时效后力学性能随入水温度的升高而升高,非等温锻时效后会出现双峰现象。在入水温度为380 ℃时,最佳时效参数为115 ℃-26 h,峰值硬度为182.38HV。训练后BP神经网络预测准度为94.9977%,对模型预测的最优工艺参数进行实验验证表明,其预测相似度为96.9%。与传统锻造工艺相比,本工艺能够在减少工序、降低能耗的同时,获得比传统锻造T6态7075铝合金更高的力学性能。
采用数值模拟与实验结合的方法,研究Ni含量对Al-5.6Zn-2.5Mg-1.6Cu-xNi(x=0%,0.1%,0.3%,0.5%,质量分数,下同)合金热裂倾向的影响。用ProCAST软件对合金的热裂倾向进行模拟,并结合OM,SEM,XRD,室温拉伸,析出相,应力场,热裂指数(hot tearing indicator,HTI),有效应力等分析表征方法系统地研究Al-Zn-Mg-Cu系合金的热裂行为和力学性能。结果表明:当Ni含量小于0.5%时,HTI值随Ni含量的增加先增加后降低,当Ni含量为0.5%时,HTI值最低;约束棒下端的有效应力随Ni含量的增加也呈先增加后降低的变化趋势,当Ni含量为0.5%时,有效应力最低。与未添加Ni的合金相比,添加0.5%Ni的合金热裂敏感性明显降低,力学性能大幅度提升,抗拉强度提高了54.79%,屈服强度提高了48.49%,拉伸应变提高了461%。数值模拟结果与实验结果具有很好的一致性。
连续碳化硅纤维增强碳化硅(SiCf/SiC)陶瓷基复合材料具有轻质、高强韧、耐高温、抗氧化等优异的综合性能,是在航空涡轮发动机热端部件和新型空天飞行器防热结构等领域具有广泛应用前景的先进材料。本文从SiCf/SiC复合材料的四大组成单元出发,综述了SiC纤维、界面相、SiC基体和环境障涂层(EBC)制备技术研究进展,并提出了SiCf/SiC复合材料未来发展需要突破的瓶颈问题。目前第三代SiC纤维具有近化学计量的C/Si比,并且具有优异的高温力学性能和耐温性能。界面相的结构和抗氧化性能对SiCf/SiC复合材料在高温有氧环境下的力学性能起着决定性作用,探索与SiC相匹配且具有优异抗氧化性能的新型界面相,并且实现连续均匀制备,是界面相发展的研究重点。SiCf/SiC复合材料常用的制备方法主要有PIP法、CVI法和RMI法,但是单一方法已经无法满足复合材料的性能需求,由此研究者主要开展了CVI-PIP联用工艺制备SiCf/SiC复合材料的工艺参数、微观结构和力学性能等研究。环境障涂层作为防止SiCf/SiC复合材料受到外界环境侵蚀的屏障,在第三代Si/Yb2Si2O7环境障涂层体系基础上,通过补充Si源、自愈合等策略可制备得到高可靠、长寿命的环境障涂层,从而提高SiCf/SiC复合材料构件的服役寿命。为了实现SiCf/SiC复合材料的广泛应用,未来还需要在复合材料结构设计、低成本制造、新型抗氧化界面相开发、抗开裂、抗剥落的新型环境障涂层研制、失效分析与寿命预测等方面开展进一步的研究工作。
氧化锆增韧氧化铝(zirconia toughened alumina,ZTA)陶瓷与单相Al2O3和ZrO2陶瓷相比具有优异的力学性能,在电子、生物医疗、半导体等高端工业领域显示出更广阔的应用前景。本文结合ZTA陶瓷的增韧机制,梳理并总结了近期国内外关于ZTA陶瓷的粉体制备、烧结方法和第三相引入等三方面的研究进展,重点分析了利用多种烧结技术和制备工艺在ZTA陶瓷中引入第三相的作用,最后指出粉体的纳米化、先进烧结技术的精细控制以及探索第三相对微观组织的调控是未来研究的重点方向。
采用电子背散射衍射技术研究不同冷拉变形量和退火温度对Al-Si-Sc-Zr合金丝材组织及力学性能的影响。结果表明:随着冷拉变形量的增加,晶粒沿着拉拔方向被拉长、细化并形成纤维状组织和典型的〈111〉形变织构。但当变形量由0.61增至0.76时,晶粒内部发生再结晶行为导致晶粒尺寸增加及小角度晶界占比锐减。此外,冷拉变形产生的加工硬化,使得丝材的抗拉强度达到181.5 MPa,屈服强度达到166.5 MPa。当冷拉态丝材在350~450 ℃退火保温2 h后,纤维状的冷拉态组织转化为细小的等轴晶并形成了典型的立方织构{100}〈001〉。上述退火工艺能够显著消除冷拉产生的加工硬化,屈服强度由166.5 MPa降至84.0 MPa,而断后伸长率由2.1%增至9.5%,退火态组织均匀且稳定,有利于后续的冷拉拔加工。
微米级第二相和再结晶组织对5083-O态合金韧性、强度等性能有重要影响。为获取5083铝合金中微米级第二相和再结晶组织的三维形貌特征,基于双束显微镜系统采集了5083-O态合金多切片在5 kV加速电压下的能谱(EDS)数据和在20 kV下的电子背散射衍射(EBSD)数据。应用Avizo软件对EDS和EBSD数据进行了三维重构。应用三维重构软件获取了合金中主要微米级第二相Mg2Si相和富Fe相的尺寸、形态、分布、体积分数等信息。结果表明:5083-O态铝合金中Mg2Si相、富Fe相和再结晶组织的体积分数分别为0.46%,0.25%和11.7%。Mg2Si相形状多为近球形、近椭球形或棒状,沿轧向伸长,表面较为圆滑;合金中富Fe相棱角分明,球形度相对较低;三维EBSD的结果表明小尺寸再结晶组织颗粒的球形度大,大尺寸的再结晶组织颗粒的球形度小;在退火过程中,再结晶颗粒是由球形小颗粒开始长大的,再结晶颗粒沿轧向生长最快;三维EBSD结果更真实地反映了再结晶组织的形态。
通过添加燃速催化剂可以影响氧化剂的分解进而有效调控固体推进剂的燃速。MOFs因其在催化高氯酸铵(ammonium perchlorate,AP)热分解中的良好特性开始崭露头角,现有研究更多集中在金属中心的改变,并未讨论配体对催化过程的影响。本工作通过使用3种不同的配体(2-甲基咪唑,对苯二甲酸和1,2,4,5-苯四胺)制备了3类Co基配合物(Co-CP)催化剂,分别讨论了对AP热分解行为的影响。结果表明,由于配体的差异导致3种Co-CP作用在AP的分解行为存在显著差别。Co-ZIF可以显著降低AP分解温度的同时提升体系放热;Co-BDC由于相对较高的热稳定性影响了催化AP热分解效果;Co-BTA可以通过配体分解释放NH3导致AP的低温分解的延后。通过热重-红外联用(TG-IR)测试捕获了反应过程中的气相产物,进一步探索并讨论了不同Co-CP催化AP分解的可能机理。该研究提供了一种金属配合物类燃速催化剂的设计思路。
为解决La(Fe,Si)13磁制冷材料在换热介质中的腐蚀问题,尝试用Ni元素部分替代Fe元素,并对替代前后LaFe11.832- x Ni x Si1.4(x=0,0.1,0.2,0.3,质量分数,下同)合金的磁热性能及不同介质中的腐蚀行为进行了系统的研究。结果表明,当Ni含量小于0.2时,LaFe11.832- x Ni x Si1.4可保持良好的磁热性能,其2 T磁场下磁熵变可达15.31 J/(kg·K)(x=0.1),14.00 J/(kg·K)(x=0.2),相对磁制冷能力分别为151.6,156.8 J/kg,且磁滞损耗明显降低。在去离子水中,LaFe11.832- x Ni x Si1.4合金的腐蚀电流I corr随Ni含量的增加由2.6159 μA/cm2降低至2.0863 μA/cm2。而复配缓蚀剂4 g/L BTA+1 g/L Na2MoO4·2H2O中LaFe11.832- x Ni x Si1.4合金最大缓蚀效率为77.06%,表现出较好的缓蚀效果。LaFe11.832- x Ni x Si1.4(x≤0.2)合金配合4 g/L BTA+1 g/L Na2MoO4·2H2O复配缓蚀剂可作为实用化的磁制冷机工质与介质的备选组合。
对国产第三代镍基单晶高温合金DD10进行了900 ℃和1050 ℃的长期时效研究,系统分析了该合金在不同时效条件下的枝晶干与枝晶间微观组织演化差异,以及γ'相和TCP相的尺寸、形态、体积分数等分布特征的演化规律,结果表明:枝晶干和枝晶间的γ'相均产生了粗化,且枝晶干和枝晶间γ'相随时间粗化长大的趋势相同,同一时效温度和时效时间下,枝晶干和枝晶间γ'相形貌稳定因子相近;量化统计结果显示γ'相粗化规律符合LSW模型。1050 ℃下时效500 h及以后,枝晶干γ'相呈现出了不规则形态,而枝晶内应力的存在使得枝晶间的γ'相形成筏状组织,筏化的方向与一次枝晶的生长方向[001]相一致。在900 ℃和1050 ℃时效过程中,枝晶间TCP相析出很少,而枝晶干TCP相体积分数随温度和时间的增加而显著增加;分析TCP相成分后,推测其为μ相;成分平衡相图计算结果显示,实验温度下合金中析出了μ相,TTT曲线计算结果显示,要析出同样体积分数的μ相,900 ℃下所需的时间比1050 ℃下要长。难熔元素的偏析使得枝晶干更容易析出TCP相,TCP相的大量析出,使γ'相形态变得不规则,同时使γ'相体积分数下降;长期时效后枝晶干和枝晶间TCP相析出量的差异,最终导致了枝晶干和枝晶间的组织形貌呈现差异。
IC21合金作为一种新型Ni₃Al基单晶高温合金,因其具有高熔点、优异的高温性能和抗蠕变能力,已成为新一代航空发动机涡轮导向叶片的理想材料。然而,涡轮导向叶片通常具有深小孔和深窄槽等复杂结构,传统加工方法难以满足高效加工要求。电解加工因其无工具磨损、高材料去除率以及不产生切削应力和热效应等优势,成为加工此类复杂结构的主要选择。本工作研究了IC21镍基单晶合金在NaCl和NaNO₃电解液中的电解加工电化学溶解行为。通过线性扫描伏安极化曲线测量,分析了IC21合金在不同电解液中的电化学反应特性。此外,通过电流效率测量、表面微观形貌分析,探讨了不同电解液和电流密度条件下合金的溶解特性和选择性溶解现象。研究表明:IC21合金在NaCl和NaNO₃电解液中均表现出典型的钝化-超钝化转变现象,其中NaNO₃电解液中形成的氧化层表现出更高的稳定性。电流效率测量表明,IC21合金在NaCl电解液中的溶解效率较为稳定,而在NaNO₃电解液中,溶解效率随着电流密度的增加逐渐下降,表现出与传统理论不同的特性。通过溶解表面形貌分析,进一步揭示了IC21合金在电解加工过程中存在选择性溶解现象,并探讨了其微观机制。基于这些实验结果,建立了不同电解液和电流密度条件下的电化学溶解行为模型,为IC21合金电解加工工艺的优化提供了理论依据。
为了探索非线性超声方法在定向凝固镍基高温合金时效组织演变中应用的可行性,以DZ411定向凝固镍基高温合金为研究对象,利用非线性超声检测技术,结合扫描电子显微镜与X射线衍射分析等组织分析手段,对不同时效状态下的DZ411合金进行微观形貌观察、γ΄相定量表征、非线性超声检测和晶格错配度分析等,探讨非线性超声系数与组织演变定量参数之间的相关性。结果表明:随着时效时间的延长,γ΄相的尺寸逐渐增大,形状由立方状向类球状转变,立方度下降,粒子密度减小,归一化非线性超声系数呈指数规律单调递增;非线性超声系数与晶格错配度、γ΄相等效直径呈现正相关,与面积分数呈现负相关。分析认为上述现象的产生归因于:时效过程中,由于发生合金元素的充分扩散和两相界面处溶质原子再分配,使得γ΄相长大及两相共格界面处的晶格应变增大,所形成的局部应力应变场进一步干扰超声波传播特性,加剧两相界面处的超声波畸变,从而促进谐波成分的产生和非线性效应的增强。
铁氧体作为常见的磁损耗型吸波材料,制备方法对其结构以及吸波性能的影响至关重要。传统的铁氧体制备多采用高温高压的溶剂热或者水热法制备,耗能大,材料后续复合时兼容性差。以氯化亚铁作为铁源,利用硝酸钾对亚铁离子进行可控的氧化反应,采用低温(50 ℃)共沉淀法制备了正八面体结构的Fe3O4,研究了不同反应条件制备产物的吸波效果,并将其与介电材料NiCo2O4复合,制备的复合材料具有较好的吸波性能。低温法降低了对生产设备的要求,减小了耗能,提高了材料复合的兼容性,大大拓宽了铁氧体材料的应用范围。
根据玻璃化转变温度匹配的原则,制备了一种层状复合、周期调制的形状记忆叠层复合材料。热塑性树脂层作为材料的可逆相,具有较低的玻璃化转变温度;纤维增强树脂层作为材料的固定相,具有较高的玻璃化转变温度,通过层层叠合的方式,采用热压罐成型工艺进行了形状记忆复合材料的制备。结果表明,材料具有较好的形状记忆性质,其形状固定率为90%~95%,形状回复率为95%左右。利用了复合材料可设计性强的特点,使材料之间进行复合或交叉结合,制造出了单一材料所不具备的形状记忆材料。
以高模量、低膨胀为特征的高体积分数SiCp/Al复合材料在航空航天精密仪器领域极具应用潜力,深化该材料的尺寸稳定性研究并进一步提高构件精度稳定性至关重要。分别对平均粒径(D 50)为14、76 μm及14 μm与76 μm级配3种SiC颗粒增强高体积分数(55%)铝基复合材料进行固溶时效和不同温度参数的固溶后冷热循环处理以及单纯的冷热循环处理等不同的尺寸稳定化处理,处理完成后与制备态试样同时进行5次180 ℃的低温热载荷环境的尺寸稳定性测试。结果表明:相较于14 μm增强相颗粒试样, 76 μm及14 μm与76 μm级配的增强相颗粒试样均表现出更好的尺寸稳定性,制备态试样尺寸变化率(dV/V)可稳定在1×10-3左右;在5种尺寸稳定化处理制度中,固溶后进行-196~191 ℃(4次)冷热循环处理的尺寸稳定化效果最为显著,处理后的试样尺寸变化率(dV/V)可稳定在10-4数量级;通过X射线衍射谱图对比,固溶后冷热循环处理对强化相Al2Cu析出有明显促进作用。
微滴喷射的稳定性和微滴尺寸的按需制备是实现芯片封装中凸点直接制备的重要前提。采用脉冲微孔喷射法(POEM)进行SAC305商用无铅焊料的喷射实验,探究了微滴喷射过程中,脉冲波形、传动杆与微孔的距离和微孔直径等工艺参数相互作用对喷射稳定性和粒子尺寸的影响,对制得焊球的表面及组织形貌、成分和相组成进行了分析。结果表明,通过协同关键工艺参数能够实现微滴的稳定喷射及尺寸的按需调控,目标粒径与实际尺寸偏差在4%以内,能够满足凸点制备稳定按需的前提条件。微滴凝固过程中的温度变化结果表明,氩气氛围中的冷速远低于氦气氛围,因此组织更粗大。结合上述结果,直接在纯铜板上制备凸点,形成了冶金层,表明了该技术的可行性,为凸点的直接制备提供了一种新途径。
针对经济发展过程中有机染料废水导致的环境污染问题,采用原位沉淀法制备氢氧化镁/硅藻土复合材料,以甲基橙为目标污染物研究其吸附性能,通过XRD,SEM,FT-IR和BET等检测方法对氢氧化镁/硅藻土复合材料进行表征,探索复合材料的投加量、初始pH值、目标污染物的初始浓度对甲基橙的吸附效果。结果表明,当氢氧化镁/硅藻土投加量为0.5 g,pH值为8,甲基橙浓度为8 mg/L时吸附效果最好,复合材料的吸附率达到93.34%,相比改性硅藻土的吸附率提升了41.34%。以吸附动力学模型、等温吸附模型、吸附热力学模型来分析吸附过程,结果表明,吸附过程是自发吸热且熵变增加,符合Freundlich等温吸附模型和准二级动力学模型,以化学吸附为主。该复合材料在循环验证实验中显示出良好的重复利用性。
以马尾藻为原料,ZnCl2为活化剂,基于自模板构筑“蛋壳”式结构进行正交实验,研究在不同浸渍比、浸渍时间、活化温度、活化时间下制备马尾藻基活性炭的最佳工艺条件。采用N2吸-脱附、SEM、XRD考察活性炭的孔结构特性、表面形貌和晶体结构,并对马尾藻基活性炭进行电化学性能测试。通过正交实验法分析得到,制备高比电容活性炭的最佳工艺条件为:浸渍比3、浸渍时间2 h、活化温度700 ℃、活化时间2 h。在9组实验条件下,所制备活性炭SAC7的电化学性能最佳,当电流密度为0.5 A/g时,活性炭SAC7的比电容高达136.4 F/g,当电流密度为5 A/g时,其比电容也达到了92.0 F/g,显示出良好的比电容性能和倍率性能;且经过10000次循环充放电后,仍有高达99.41%的电容保持率,具有极佳的循环稳定性。
为制备高性能、低成本的稀贵金属电催化析氢材料,采用化学沉淀法结合热分解法制备RuO2-NiO/NF异质结构析氢电催化剂,该电极在碱性析氢反应(HER)中表现出优异的催化活性和稳定性。通过表征、测试以及理论(DFT)计算分析,证明RuO2和NiO结合产生的异质结构界面是该催化剂性能提升的核心,该界面上发生电荷转移导致双活性位点的产生,使不同种类的吸附质在不同活性位点选择性吸附,协同促进了析氢反应的各基元反应步骤,使得该催化剂在碱性析氢反应中表现优异:10 mA·cm-2电流密度下的析氢过电位仅为52 mV,Tafel斜率为47.5 mV·dec-1,100 mV下的TOF达到0.342 s-1,且在200 mA·cm-2的电流密度下、经100 h稳定性测试后仍维持稳定电势。综上所述,本工作从界面工程角度成功构筑RuO2-NiO/NF异质结构催化剂,并对其HER机理进行了探讨,为Ni基化合物异质结构催化剂的构建及在电催化领域的应用提供了新思路。