不同应变率下纳米多晶Cu/Ni薄膜变形行为的分子动力学模拟
Molecular Dynamics Simulations of Deformation Behaviors for Nanocrystalline Cu/Ni Films Under Different Strain Rates
用分子动力学方法模拟了纳米多晶Cu/Ni薄膜在不同应变率下进行应变加载时的变形行为与力学性能。结果表明:Cu/Ni薄膜在较高的应变率加载情况下具有较高的屈服极限和应变率敏感性(m)。应变率为108s-1时Cu/Ni多层膜的界面上产生孔洞,而应变率为1010s-1时纳米多晶Cu薄膜出现碎裂。在较高的应变率加载条件下,Cu,Ni薄膜中FCC,HCP,OTHER原子团分数变化都很显著,而较小应变率时只有Cu薄膜的结构变化明显。模拟结果还表明,应变率增加有利于堆垛层错的形成,但应变率超过某一值时无序原子团增加会阻碍堆垛层错原子团的生长。
Molecular dynamics simulations are carried out to investigate the deformation behaviors and mechanical properties of nanocrystalline Cu/Ni films under conditions of tensile strain at different strain rates. The results indicate that the Cu/Ni films have higher yield strength and higher strain rate sensitivity(m)at the higher strain rate. The nucleation of voids in Cu/Ni multilayers' interface is observed at a strain rate of 108s-1, whereas spallation in nanocrystalline Cu films is appeared at a strain rate of 1010s-1.For the higher strain rate loading conditions, the FCC, HCP, and OTHER atomic groups are changed significantly both in Cu and Ni films. However, striking structural changes are found only in the Cu films under conditions of tensile strain at lower strain rate. The simulation results show that increasing strain rates are benefit to the formation of HCP structure, while if the strain rates exceed a certain value, the increasing disorder atomic groups may impede the growth of HCP atomic groups.
分子动力学 / 纳米多晶 / Cu/Ni薄膜 / 应变率 {{custom_keyword}} /
molecular dynamics / nanocrystalline / Cu/Ni film / strain rate {{custom_keyword}} /
图 1 Cu/Ni薄膜系统的初始模型,上层为Ni层(橙色-FCC结构、绿色-OTHER、紫色-HCP结构);下层为Cu层(蓝色-FCC结构、黄色-OTHER、红色-HCP结构)Fig.1 The initial configuration of nanocrystalline Cu/Ni films An upper region (Ni) and a lower region (Cu) atoms are colored in this method:orange=Ni-FCC,purple=Ni-HCP,green=Ni-OTHER,blue=Cu-FCC,red=Cu-HCP,and yellow=Ni-OTHER atoms |
图 5 应变率为108s-1 时单轴加载纳米多晶Cu/Ni样品截面图(a)用中心对称参数值P对原子着色,蓝色-完整FCC结构,绿色-部分位错、堆垛层错、孪晶界结构,红色-表面原子;(b)用CNA值对原子进行着色,颜色设置与图1相同;(1)ε=0;(2)ε=0.057;(3)ε=0.058;(4)ε=0.059 Fig.5 Slices of the nanocrystalline Cu/Ni sample under uniaxial tension at a constant strain rate of 108s-1 (a) the atoms colored using P values,lattice atoms:blue;stacking faults,partial dislocations and twin boundary atoms:green;void surface atoms:red;(b) the atoms colored using CNA values,the contour scale for the CNA values is the same as in fig.1;(1)ε=0;(2)ε=0.057;(3)ε=0.058;(4)ε=0.059 |
图 6 应变率为1010s-1 时单轴加载纳米多晶Cu/Ni样品截面图(a)用中心对称参数值P对原子着色:蓝色-完整FCC结构,绿色-部分位错、堆垛层错、孪晶界结构,红色-表面原子;(b)用CNA值对原子进行着色,颜色设置与图1相同;(1)ε=0;(2)ε=0.0927;(3)ε=0.1126;(4)ε=0.1325 Fig.6 Slices of the nanocrystalline Cu/Ni sample under uniaxial tension at a constant strain rate of 1010s-1 (a) the atoms colored using P values,lattice atoms:blue;stacking faults,partial dislocations and twin boundary atoms:green;void surface atoms:red;(b) the atoms colored using CNA values,the contour scale for the CNA values is the same as in fig.1;(1)ε=0;(2)ε=0.0927;(3)ε=0.1126;(4)ε=0.1325 |
1 |
ZHU X Y, PAN F, LIU X J, et al Microstructure and mechanical properties of nanoscale Cu/Ni multilayers[J]. Materials Science and Engineering A, 2010, 527 (4-5): 1243- 1248.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
王涛, 卢子兴, 杨振宇 Cu/Ni多层纳米线力学性能尺寸效应的分子动力学模拟[J]. 计算力学学报, 2011, 28 (Suppl): 147- 151.
WANG T, LU Z X, YANG Z Y, et al Size effects on the mechanical properties of Cu/Ni multi-layer nano-wires: molecular dynamics simulation[J]. Chinese Journal of Computational Mechanics, 2011, 28 (Suppl): 147- 151.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
CHELLALI M R, BALOGH Z, BOUCHIKHAOUI H Triple junction transport and the impact of grain boundary width in nanocrystalline Cu[J]. Nano Letter, 2012, 12 (7): 3448- 3454.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
程东, 严志军, 严立 Cu/Ni多层膜强化机理的分子动力学模拟[J]. 金属学报, 2008, 44 (12): 1461- 1464.
CHEN D, YAN Z J, YAN L Molecular dynamics simulation of strengthening mechanism of Cu/Ni multilayers[J]. Acta Materialia Sinica, 2008, 44 (12): 1461- 1464.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
梁浩, 陈勇梅, 胡文军, 等 不同应变率下MgAIZnY合金的拉伸性能与断口研究[J]. 材料工程, 2012, (1): 66- 70.
LIANG H, CHEN Y M, HU W J, et al Tensile property and fracture surface for MgAlZnY alloys at different strain rates[J]. Journal of Materials Engineering, 2012, (1): 66- 70.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
LU L, LI S X, LU K An abnormal strain rate effect on tensile behavior in nanocrystalline copper[J]. Scripta Materialia, 2001, 45 (10): 1163- 1169.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
SCHWAIGER R, MOSER B, CHOLLACOOP N, et al Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel[J]. Acta Materialia, 2003, 51 (17): 5159- 5172.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
VO N Q, AVERBACK R S, BELLON P, et al Yield strength in nanocrystalline Cu during high strain rate deformation[J]. Scripta Materialia, 2009, 61 (1): 76- 79.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
DONGARE A M, RAJENDRAN A M, MATTINA B L Atomic scale simulations of ductile failure micromechanism in nanocrystalline Cu at high strain rates[J]. Physical Review B, 2009, 80 (10): 4108- 4118.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
DERLET P M, SWYGENHOVEN H V Atomic positional disorder in fcc metal nanocrystalline grain boundaries[J]. Physical Review B, 2003, 67 (1): 4202- 4209.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
PLIMPTON S J Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995, 117 (1): 1- 19.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
MEHL M J, PAPACONSTANTOPOULOS D A Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations[J]. Physical Review B, 2001, 63 (22): 4106- 4121.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
HOOVER W G Canonical dynamics: equilibrium phase-space distributions[J]. Physical Review A, 1985, 31 (3): 1695- 1697.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
KELCHNER C L, PLIMPTON S J, HAMILTON J C Dislocation nucleation and defect structure during surface indentation[J]. Physical Review B, 1998, 58 (17): 11085- 11088.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
WEI Y J, BOWER A F, GAO H J Enhanced strain-rate sensitivity in fcc nanocrystals due to grain-boundary diffusion and sliding[J]. Scripta Materialia, 2008, 56 (8): 1741- 1752.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
KUMAR K S, SWYGENHOVEN H V, SURESH S Mechanical behavior of nanocrystalline metals and alloys[J]. Scripta Materialia, 2003, 51 (19): 5743- 5774.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
WOLF D, YAMAKOV V, PHILLPOT S R, et al Deformation of nanocrystalline materials by molecular-dynamics simulation: relationship to experiments[J]. Acta Materialia, 2005, 53 (1): 1- 40.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
JIA D, RAMESH K T, LU L, et al Compressive behavior of an electrodeposited nanostructured copper at quasistatic and high strain rates[J]. Scripta Materialia, 2001, 45 (5): 613- 620.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
BRINGA E M, CARO A, WANG Y, et al Ultrahigh strength in nanocrystalline materials under shock loading[J]. Science, 2005, 309 (5742): 1838- 1841.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
BRINGA E M, TRAIVIRATANA S, MEYERS M A Void initiation in fcc metals: Effect of loading orientation and nanocrystalline effects[J]. Acta Materialia, 2010, 58 (13): 4458- 4477.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
BRANDL C, DERLET P M, SWYGENHOVEN H V Strain rates in molecular dynamics simulations of nanocrystalline metals[J]. Philosophical Magazine, 2009, 89 (34-36): 3465- 3475.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
ASARO R J, SURESH S Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins[J]. Acta Materialia, 2005, 53 (12): 3369- 3382.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
CARREKER R P, HIBBARD W R Tensile deformation of high-purity copper as a function of temperature, strain rate, and grain size[J]. Acta Materialia, 1953, 1 (6): 654- 663.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
JIANG Z G, LIU X, LI G G, et al Strain rate sensitivity of a nanocrystalline Cu synthesized by electric brush plating[J]. Appl Phys Lett, 2006, 88 (14): 3115- 3117.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
WEI Q Strain rate effects in the ultrafine grain and nanocrystalline regimes-influence on some constitutive responses[J]. J Mater Sci, 2007, 42 (5): 1709- 1727.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
26 |
TUCKER G J, TIWARI S, ZIMMERMAN J A, et al Investigating the deformation of nanocrystalline copper with microscale kinematic metrics and molecular dynamics[J]. J Mech Phys Solids, 2012, 60 (3): 471- 486.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
27 |
TSUZUKI H, BRENICIO P S, RINO J P Accelerating dislocations to transonic and supersonic speeds in anisotropic metals[J]. Appl Phys Lett, 2008, 92 (19): 1909- 1911.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
28 |
DONGARE A M, RAJENDRAN A M, LAMATTINA B, et al Atomic scale studies of spall behavior in nanocrystalline Cu[J]. J Appl Phys, 2010, 108 (11): 3518- 3527.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
29 |
CHOI Y, PARK Y, HYUN S Mechanical properties of nanocrystalline copper under thermal load[J]. Physics Letters A, 2012, 376 (5): 758- 762.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
30 |
MEYERS M A, MISHRA A, BENSON D J The deformation physics of nanocrystalline metals: experiments analysis and computations[J]. Nanostructured Materials, 2006, 58 (4): 41- 48.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 | 〉 |