半导体光催化材料因其绿色及低能耗等优势,在环保领域有重要的应用前景。Ag3PO4以优异的光响应利用率和良好的催化性能引起了人们的广泛关注。然而,Ag3PO4纳米粒子易团聚,且难以回收,不利于实际应用。本文用沉淀法合成Ag3PO4纳米粒子,以海藻酸钠(NaAlg)作为载体,将Ag3PO4分散到NaAlg水溶液中得到铸膜液,以草酸(OA)作为交联剂,制备了OA@NaAlg@Ag3PO4光催化膜,并对该膜进行了结构和性能表征。在10 g/L的NaCl溶液中该膜可以保持完整,而海藻酸钙膜则溶胀破裂,表明该膜具有优异的耐盐性。在紫外光照射15 min后,OA@NaAlg@Ag3PO4膜对含10 g/L NaCl的10 mg/L甲基橙(MO)的降解率达到90%,该膜对10 mg/L的亚甲基蓝、孔雀石绿、橙黄G、苋菜红和罗丹明B均达到90%以上的降解率。OA@NaAlg@Ag3PO4膜具有良好的抗溶胀性及耐盐性,对高盐下的多种染料具有良好的光催化降解性能,其重复使用性好且易于回收催化剂Ag3PO4。
壳聚糖水凝胶具有优异的可降解性和生物相容性,已成为构筑柔性应变传感器的重要材料。基于壳聚糖导电水凝胶的柔性应变传感器具有超强的环境适应力,广泛应用于健康监测、植入式设备等生物医学领域中。本文综述了壳聚糖导电水凝胶的制备方法和导电机制,总结了壳聚糖导电水凝胶在耐低温型、自修复型及自黏型的功能性柔性应变传感器中的应用现状,最后指出制备工艺的优化、新材料的应用、人工智能化是壳聚糖导电水凝胶柔性应变传感器未来的重点研究方向,旨在为柔性应变传感器多功能应用的进一步发展提供理论基础和实践指导。
水凝胶是一种理想的软骨修复材料, 但目前很难有人工材料能实现软骨的超低摩擦因数。使用两性离子单体[2-(甲基丙烯酰氧基)乙基]二甲基-(3-磺丙基)(SBMA)和阴离子单体2-丙烯酰氨基-2-甲基丙磺酸(AMPS)合成一种两性离子-阴离子双交联P(AAm-co-AAc-co-SBMA-co-AMPS)/Fe3+水凝胶。在水和PBS中进行摩擦学测试, 以评估两性离子和阴离子基团对摩擦因数(CoF)的影响。结果表明:SBMA和AMPS引入的物理交联点可以提高水凝胶的抗压强度, 在水中实现了较低CoF(0.04);此外, 在PBS中观察到CoF进一步降低至0.015, CoF的降低是由于水凝胶在PBS中浸泡产生的高度水合上层所造成的。
合成一种基于动态亚胺键的自愈合氧化海藻酸钠-乙二醇壳聚糖水凝胶(OSA-GC),将海藻酸钠通过高碘酸钠氧化合成氧化海藻酸钠(OSA),并与乙二醇壳聚糖(GC)发生席夫碱反应制备具有不同交联度的自愈合OSA-GC水凝胶,研究GC的浓度对OSA-GC水凝胶的微观形态、黏弹性能、溶胀性能、自愈合性能、降解速率和体外药物释放性能的影响。结果表明:OSA-GC水凝胶具有多孔结构,通过控制OSA与GC的质量比,OSA-GC水凝胶的孔径处于50~280 μm;OSA-GC水凝胶的溶胀率在120 h达到溶胀平衡,溶胀率达到71.3~112.1。OSA-GC水凝胶在含有溶菌酶(10 mg/mL)的PBS中发生降解,在12天后OSA-GC水凝胶的质量损失达到43.1%~51.9%;在室温条件下,OSA-GC水凝胶在无外界刺激时2 h实现自愈合,负载吉西他滨的OSA-GC自愈合水凝胶对抗癌药物吉西他滨具有缓释作用,药物释放时间可达48 h,药物释放量达到72.6%~89.5%。OSA-GC自愈合水凝胶在药物载体领域具有较好的应用前景。
水凝胶是一种交联的三维网状亲水性聚合物材料,能够吸收和保留大量的水并且保持一定形状。近年来,随着石油资源的枯竭和人类对环境问题的日益关注,天然或改性类高分子合成聚合物水凝胶已成为研究的热点。纤维素及其衍生物是一大类可再生天然高分子材料,具有无毒、资源丰富以及种类繁多等特点,由它合成的纤维素基水凝胶具有良好的吸水保水性、生物相容性和生物可降解性等,可应用于医疗、环境、农业等多个领域。本文综述了近年来纤维素基水凝胶的构建及应用研究进展,将水凝胶的微观网络结构与宏观性能相结合,重点对比了单网络、互穿网络和半互穿网络纤维素基水凝胶的力学性能、溶胀性能和吸附性能等,并对其在医疗、环境、农业以及电子领域的应用进行总结。对开发兼具力学性能和生物相容性的纤维素基水凝胶以及未来发展更多绿色经济的方法合成纤维素基水凝胶材料并将之用于工业化提出了展望。
可承受大而复杂变形的能量存储设备的开发对于新兴可穿戴电子设备至关重要。目前,由导电聚合物制成的水凝胶在加工过程中实现了高电导率和多功能性的融合。利用简单的两步共聚方法成功构建了一种具有丰富微孔结构的水凝胶超级电容器:聚乙烯醇(PVA)和聚丙烯酰胺(PAM)形成双交联网络水凝胶,赋予刚性聚苯胺柔性,此外,聚丙烯酰胺提高了聚苯胺基水凝胶的机械强度,使得聚苯胺基(NPP)水凝胶具有良好的力学和电化学性能,在1 A·g-1其抗拉强度和比电容分别为0.3 MPa与269.12 F·g-1。聚苯胺(PANI)的添加减小了聚乙烯醇和聚丙烯酰胺双交联网络水凝胶(PP)电极的内阻,其修饰后的电阻值为39.184 Ω,这使得NPP水凝胶实现了较高的电子传输能力。这种水凝胶的灵活开发集成为能源系统提供了一种替代策略,适合于超级电容器等多种应用。
微针是一种微凸起阵列组成的微创装置, 能够穿透角质层到达表皮及真皮层, 具有安全、无痛、微创、自我给药及便捷等优点。作为一种新型微针, 水凝胶微针因其优良的性能在医学领域备受关注。水凝胶微针具有良好的生物相容性及力学性能, 在皮肤作用之后可以被完整取下而不会在体内残留聚合物; 其特有的溶胀性可以实现人体检测物微创提取及药物缓释, 未来可以在个人身体健康监测及药物控释领域发挥巨大作用。本文围绕水凝胶微针的作用机理、微针设计、制备方法及应用进展进行了综述, 重点探讨了水凝胶微针的设计参数及其在药物递送、提取监测及伤口愈合领域的应用现状, 并指出水凝胶微针在皮肤感染风险、药代动力学及佩戴舒适性等方面存在的问题。未来的重点研究方向应是与智能设备相结合, 在微针贴片上同时实现人体监测与药物智能控释。
柔性能量存储设备处于下一代电源的最前沿,其中最重要的组件之一就是凝胶电解质。采用自由基聚合法制备PAM/P123锌离子电池用双网络凝胶电解质,结果表明:加入少量三嵌段共聚物P123,宏观上提高凝胶电解质的抗拉强度、韧性和抗压强度,同时微观上使凝胶骨架形成0.6 μm的中孔并提高表面孔分布密度,进而提高了电解液的浸润性。PAM/P123系列电解质不仅具有高平均溶胀率,而且在-30~65℃范围内电导率均高于纯PAM电解质。其中PAM/P123-2性能最佳,具有1920.79%平均溶胀率,且在0℃时的离子电导率为36.2 mS·cm-1。使用该凝胶电解质制备的柔性准固态Zn/MnO2电池在0℃下充放电稳定,1000周次循环后容量保持率达82.39%。
胶原、海藻酸钠和透明质酸是天然来源的高分子材料,具有良好的细胞相容性与生物安全性,在细胞培养、组织工程、药物负载等方面具有广泛应用。单纯的胶原力学性能较差,将胶原与海藻酸钠制备成复合水凝胶材料后,可以通过调节海藻酸钠与Ca2+交联程度来改变水凝胶支架的力学性能和孔隙率,模拟细胞培养的力学环境和细胞微环境。本研究通过PIUMA纳米压痕仪和DHR流变仪表征Ⅰ型胶原/海藻酸钠/透明质酸水凝胶的杨氏模量和溶胶-凝胶转变温度。并将内皮细胞与间充质干细胞在水凝胶微环境内进行3D培养,倒置荧光显微镜观察细胞培养0,3,5,7 d时细胞的活力情况,表征Ⅰ型胶原/海藻酸钠/透明质酸水凝胶的细胞相容性,并在内皮细胞与间充质干细胞培养0,1,4,6 d时,观察内皮细胞的迁移、成血管情况,在培养1,6,9 d时,观察内皮细胞的生长扩散情况。结果表明:水凝胶杨氏模量为(600±81)Pa,水凝胶的溶胶-凝胶转变温度为23.2℃。细胞培养0,3,5,7 d时,活力持续增强,培养4,6 d时,观测到共培养下内皮细胞的迁移,培养1,6,9 d时,水凝胶内的内皮细胞球体持续生长扩散。本工作表明,Ⅰ型胶原/海藻酸钠/透明质酸水凝胶对内皮细胞与间充质干细胞具有良好的细胞相容性,可用于细胞3D培养的理想支架材料。水凝胶的杨氏模量和溶胶-凝胶转变温度对细胞活力无损害,可作为研究血管新生的相关体外模型,在血管组织工程研究中具有重要的应用前景。
增材制造技术自问世以来成为拓展多学科发展、实现多学科研究融合以及联结材料与产品的关键性技术, 该技术颠覆了传统加工设计和制造理念, 同时也是实现智能制造的重要方法。智能材料是对环境具有感知、可响应、自修复和自适应的一类材料。将智能材料与增材制造技术有机结合, 可实现具有感受外部刺激或环境激活的三维智能器件的一体化制造。智能材料增材制造技术被广泛应用于个性化医疗、柔性电子和软体机器人等领域。本文对增材制造中所涉及的智能材料进行综述, 介绍通过增材制造方法对金属类、高分子类和陶瓷类智能材料所带来的优势及面临的问题。增材制造技术作为实现设计、材料和结构有机融合的有效手段, 将成为推动智能材料发展的关键。
固态聚合物电解质因其质量轻、柔性好,且与电极材料接触良好、界面阻抗小,成为开发新一代高能量密度、高安全性乃至高柔韧性电化学器件的潜在材料,近年来获得了广泛关注。但因其离子电导率低、力学性能差等缺陷也成为限制其进一步商业化的关键问题。通过交联、共混、共聚等手段组成聚合物的复合体系有可能很好地解决这些问题,因此本文首先对聚合物中的离子导电机理进行了简要介绍,旨在从原理的角度阐释上述问题的解决策略;随后综述了近年来多种聚合物基复合电解质在电化学器件中的应用以及改性策略。最后对复合固态聚合物电解质目前面临的基础研究和实际应用问题进行了讨论,给出了解决这些问题的建议,以期为新型聚合物复合固态电解质的设计与制备提供新思路。
可降解水凝胶因其良好的生物相容性和生物降解性被广泛用于关节软骨的修复和再生。本文以可降解水凝胶在软骨组织工程中的三类应用策略为主线,概述了用于原位成型可注射水凝胶的蛋白多糖类材料及纳米复合类材料;系统总结了传统工艺制造组织工程支架的优缺点及多种工艺结合的制备方法;重点归纳了近年来3D打印组织工程支架从纯软骨到骨/软骨一体化、从单层到多层的研究进展;最后分析了可降解水凝胶作为关节软骨支架材料在微观定向结构和生物活性功能化方面的局限性,并作出展望:未来开展多材料、多尺度、多诱导的高仿生梯度支架是关节软骨组织工程的一个重要研究方向。
人体皮肤能够感知外界的信息,在与外界交流中起着重要的作用。模仿人体皮肤特性和环境感知能力的电子皮肤在医疗监控、仿生假肢与机器人触觉感知等领域中有着广泛的应用。与传统的可穿戴传感器相比,电子皮肤更轻、更灵活、更具延展性,而且具有无线、透明、与人体皮肤兼容等特性,已成为新兴的研究领域之一。电子皮肤可以连续检测人体的大量物理和生化参数、人体运动、气体等,以实时监测人体健康、体育运动以及各种环境中的气体。本文综述了电子皮肤所使用的最新材料,包括零维(0D)、一维(1D)、二维(2D)和三维(3D)微纳米材料、聚合物材料、水凝胶材料及其复合材料等;详细归纳了基于这些热点核心材料所构建的电子皮肤在健康监测、运动监测以及气体监测等生命健康领域中的应用;指出了电子皮肤在研究过程中依然存在着成本高、工艺复杂等技术难题,但电子皮肤发展趋势朝着多功能化和多种外界刺激同步检测发展,并且在医疗设备、机器技术及未来的制造领域中应用前景广阔。
工业废水给水体和土壤带来巨大的灾害,严重影响农作物的生长。为了获得洁净水,须制备一种稳定、有效、可持续的处理剂来控制水污染。使用木质素磺酸钠和壳聚糖,以自由基聚合法在聚丙烯酸上制备木质素基水凝胶吸附剂,并将其应用于除去Pd2+和Cd2+。采用正交法对木质素磺酸钠、壳聚糖、交联剂以及引发剂的含量进行优化。分别利用傅里叶红外光谱仪、扫描电镜图、热分析仪以及Zeta电位仪对吸附剂进行表征。探究不同条件对木质素基水凝胶吸附Pb2+和Cd2+的影响,在此基础上建立动力学和等温线模型。结果表明:在吸附剂为0.015 g、重金属离子浓度为100 mg·L-1、pH值为7时,对Pd2+的吸附容量为367 mg·g-1,对Cd2+的吸附容量为296 mg·g-1。同时,揭示木质素基水凝胶剂的吸附过程是一种以静电吸附为辅、化学吸附为主的吸附模式。
功能高分子材料是一类具有催化性、导电性、光敏性、生物活性等特殊功能的高分子材料,对物质、能量、信息具有传输、转换或贮存的作用。功能高分子材料具有质量轻、种类多样、专用性强等特点,广泛应用于机械、信息技术、生物医学等多个领域。功能高分子材料的发展非常迅速,为满足各领域对新技术发展的需要,功能高分子材料逐渐往多功能化方向发展,比如电磁材料、光热材料等相继出现。而随着智能高分子的出现,功能高分子材料也逐渐向着智能化发展,比如自修复功能高分子材料、形状记忆材料等。本文综述了近年来功能高分子材料的研究进展,重点介绍了反应型功能高分子材料、光功能高分子材料、电功能高分子材料、生物医用功能高分子材料、环境降解高分子材料、形状记忆高分子材料及智能高分子水凝胶这几类功能高分子材料,并对其应用做了简要阐述。目前功能高分子材料更多的是仅有光电等传统功能或形状记忆等特殊功能,相信兼有传统功能和特殊功能的功能高分子材料将是未来材料的发展方向。
3D打印技术是一种快速兴起的新型数字化制造技术,因具有设计自由、大规模定制以及快速原型制造等优点,在医学、航天、汽车、食品等领域应用前景广阔。随着精准化、个性化医疗需求的增长,3D打印技术逐渐被应用到医疗领域,如植入物制造、诊断平台和药物输送系统等,并成为目前较为前沿的研究领域之一,其个性化定制的特点使得3D打印技术能够根据患者的病情制备相应的医疗产品以帮助患者康复。因此,本文概述了3D打印技术的发展,分类介绍了可用于3D打印的医用材料,以及3D打印技术在医疗领域的应用。但是3D打印的植入物是静态的,无生命的,不能随着内环境的变化进行适应性调整,4D打印可以制造出具有"活性"且结构更为复杂的、与天然组织结构非常相似的工程化组织结构,其继承了3D打印技术优点的同时,弥补了现有3D打印的一些缺陷,未来在医学领域会有更广阔的应用前景。
组织工程支架要求材料具有良好的生物相容性、相匹配的力学性能,以及利于细胞生长繁殖的形貌和结构。尽管人们已经开发出了大量生物材料用于制备组织工程支架,然而,组织工程支架的成形困难和力学性能差等问题仍然严重限制着其发展。以海藻酸钠为原材料,通过添加琼脂糖增强其力学性能,研究不同比例海藻酸钠/琼脂糖复合凝胶的结构和形貌变化,测试其力学性能。利用直写打印成形复合水凝胶支架,观察复合凝胶中微观孔隙的大小。结果表明:不同比例的海藻酸钠/琼脂糖复合凝胶含水量差异较小,均在90%附近。除了纯琼脂糖凝胶和体积比为1:2的复合凝胶外,其他比例的复合凝胶表面和断面均比较粗糙。琼脂糖能在一定程度上增强复合凝胶,海藻酸钠与琼脂糖的体积比2:1的复合凝胶压缩模量最高,可达0.353 MPa。碳酸钙的分解在复合凝胶中产生了亚微米级的孔隙,因此制备出的复合凝胶具有适合细胞生长繁殖的粗糙表面和微观孔隙。
二甲酸钾(KDF)为抗生素的新型替代品,但在牲畜饲养中还未大量普及。采用水热法自制P型分子筛(Zeolite P),负载KDF分散在羧甲基纤维素(CMC)溶液中,与FeCl3交联,利用凝聚法制备壳聚糖-羧甲基纤维素-P型分子筛-二甲酸钾pH敏感水凝胶抗菌微球。通过FT-IR,TGA和SEM分析可知,壳聚糖(CS)和CMC通过离子键形成结构稳定的聚电解质复合物,Zeolite P镶嵌缠绕在CMC基质中。溶胀差异性表明水凝胶微球具有高pH敏感性,可以适用不同pH条件下的持续给药。缓释动力学研究表明:抗菌微球对KDF具有一定的缓释作用,且遵循一级动力学释放模型和Higuchi模型。体外抗菌实验发现,抗菌液浓度为24 mg/mL和48 mg/mL时对大肠杆菌和金黄色葡萄球菌有显著的抗菌性,可以有效地抑制细菌的生长。
自修复聚合物材料能够自行修复在加工和使用过程中产生的微观或者宏观损伤,从而解决材料内部微裂纹难以检测和修复的问题,保持其结构和功能的完整性。将自修复聚合物应用于电化学储能器件中,可有效提升器件的安全可靠性和使用寿命,成为近年来的研究热点之一。本文概括介绍了外援型和本征型自修复聚合物材料的修复机理,着重总结了不需要修复剂、且可实现多次可逆修复的本征型自修复聚合物应用于电化学储能领域的研究进展,以储能器件的电极、电解质以及界面为出发点,综述了自修复功能聚合物分别作为高比能电极黏结剂、界面修饰层、可自修复电解质的研究进展,阐述了自修复机理及其对储能器件电化学性能的影响规律,探讨了自修复聚合物材料在储能领域未来的发展方向。
传统的电阻型气体传感器大多基于金属氧化物半导体材料,其能耗高、响应灵敏度较差,无法满足工业气体检测的需求。随着近几年三维石墨烯材料研究的深入,三维石墨烯及其复合材料凭借其高的比表面积和电导率,成为近几年气体传感器的研究热点之一。本文从三维石墨烯的制备方法着手,对三维石墨烯基电阻型气体传感器的性能和应用进行了综述。同时针对目前三维石墨烯基气体传感器存在的响应恢复速度慢、生产规模小等问题,提出传感芯片微型化、生产智能化等解决方法,使其成为未来工业物联网的感应前端。
泊洛沙姆是一种温敏性合成聚合物,随着温度改变能够实现溶胶-凝胶转变,但其相对分子质量低,水凝胶结构很难长期保持。本研究以泊洛沙姆为基体,通过与海藻酸钠溶液混合制备了温敏性海藻酸钠/泊洛沙姆复合水凝胶(SA/P407)。通过傅里叶变换红外光谱(FT-IR)、试管倒置法、扫描电子显微镜(SEM)、旋转流变仪和紫外-可见分光光度计(UV-Vis)对海藻酸钠/泊洛沙姆复合水凝胶的结构、温敏性、微观形态、动态黏弹性和体外药物释放性能进行了表征,此外还研究了海藻酸钠/泊洛沙姆复合水凝胶的溶胀性能。结果表明:海藻酸钠/泊洛沙姆复合水凝胶具有温敏性,通过加入海藻酸钠能够降低泊洛沙姆在体温下的成胶浓度(质量分数为6%);通过控制海藻酸钠与泊洛沙姆的质量比,能够使溶胶-凝胶转变温度处于室温与体温(25~37℃)之间,并且缩短凝胶化时间为84 s;海藻酸钠/泊洛沙姆复合水凝胶具有高度孔隙化且孔隙之间相互连通的结构特点,其孔径大小处于20~80 μm范围内;随着海藻酸钠添加量的增加,海藻酸钠/泊洛沙姆复合水凝胶的溶胀率逐渐降低;海藻酸钠/泊洛沙姆复合水凝胶对抗癌药物吉西他滨具有缓释作用,药物释放时间可达72 h。海藻酸钠/泊洛沙姆复合水凝胶在可注射药物缓释载体方面具有重要的应用前景。
羧甲基壳聚糖是一种壳聚糖衍生物,具有良好的生物相容性和可降解性,在生物医药领域具有广泛的应用。本研究合成一种可光交联的水溶性羧甲基壳聚糖衍生物。通过对羧甲基壳聚糖进行双键修饰,合成甲基丙烯酸缩水甘油酯改性的羧甲基壳聚糖(M-CMCS),并通过核磁共振氢谱(1H-NMR)和傅里叶变换红外光谱(FT-IR)对M-CMCS的结构进行表征。通过光引发M-CMCS交联制备具有不同交联度的M-CMCS水凝胶。通过扫描电子显微镜(SEM)、流变仪和紫外-可见分光光度计(UV-Vis)分别对M-CMCS水凝胶的微观形态、黏弹性能、溶胀性能、酶促降解性能和体外药物释放性能进行了研究。结果表明:随着甲基丙烯酸缩水甘油酯与羧甲基壳聚糖的氨基摩尔比的增加,产物的接枝度逐渐增加。M-CMCS水凝胶具有高度孔隙化且孔隙之间相互连通的结构特点,孔径在1~20 μm范围内。随着交联度的增大,M-CMCS水凝胶的溶胀比减小。M-CMCS水凝胶在溶菌酶作用下缓慢降解,随着交联度的增大,降解速率减慢。M-CMCS水凝胶对抗癌药物吉西他滨具有缓释作用,药物释放时间可达4天。光交联M-CMCS水凝胶在药物释放及组织工程领域具有重要的应用前景。
以玉米芯为原料提取半纤维素,通过自由基聚合和原位共沉淀法制备半纤维素基磁性水凝胶。采用离子色谱仪、扫描电镜、万能拉力机等手段进行表征,考察磁性水凝胶的性能,并对亚甲基蓝进行吸附性能研究。结果表明:所制备的半纤维素基磁性水凝胶具有超顺磁性,最大饱和磁化强度为21.83 A·m2/kg,最大压缩强度为0.119 MPa,对亚甲基蓝染料具有较好的吸附性,去除率达97%。所制备的半纤维素基磁性水凝胶溶胀性能好、具有超顺磁性、亚甲基蓝去除效果好,具有较好的应用前景。
激励响应复合材料是一种智能材料,通常具有自感知、自主响应、形状记忆、自适应和自修复等特征。本文对4D打印中使用的激励响应材料进行了综述,重点介绍4D打印形状记忆复合水凝胶和形状记忆聚合物(SMP)及其复合材料的应用研究进展。最后,总结了4D打印在生物医疗和航空航天领域的应用现状,并对4D打印的未来发展趋势以及应用前景进行展望。4D打印是一项新兴制造技术,尽管目前已经出现了许多不同的打印方法、可打印智能材料和驱动方式,但是4D打印在实际工程应用中仍然面临许多挑战。新打印技术、新智能材料、新结构设计和建模软件需要发展以促进4D打印在软机器人、生物医学、航空航天和智能电子设备等领域的实际应用。
泊洛沙姆(poloxamer)是一种温敏性聚合物,在浓度为15.0%(质量分数,下同)~30.0%时可形成凝胶。为改善泊洛沙姆在体温下的成胶浓度和药物缓释性能,以泊洛沙姆407为基底,与新型温敏性乙酰化乙二醇壳聚糖复合,制得了温敏性乙酰化乙二醇壳聚糖/泊洛沙姆复合水凝胶。通过傅里叶变换红外光谱(FT-IR)、试管倒置法、旋转流变仪、扫描电子显微镜(SEM)和紫外-可见分光光度计(UV-vis)对乙酰化乙二醇壳聚糖/泊洛沙姆的结构、温敏性、力学性能、微观形貌和体外药物释放性能进行表征。结果表明,乙酰化乙二醇壳聚糖/泊洛沙姆溶液具有热可逆温敏性溶胶-凝胶转变行为。通过控制乙酰化乙二醇壳聚糖/泊洛沙姆的质量比,能够使溶胶-凝胶转变温度处于室温与体温(25~37℃)之间,缩短凝胶化时间(382 s),降低泊洛沙姆407在体温下的成胶浓度(6%)。乙酰化乙二醇壳聚糖/泊洛沙姆复合水凝胶具有高度孔隙化的三维结构,其孔径大小处于10~60 μm范围内,且表现出较高的力学性能。乙酰化乙二醇壳聚糖/泊洛沙姆复合水凝胶对抗癌药物吉西他滨具有缓释作用,载药凝胶的释药时间可达72 h。乙酰化乙二醇壳聚糖/泊洛沙姆复合水凝胶在可注射药物缓释载体方面具有重要的应用前景。
光子晶体是至少两种不同折射率介质周期性排列而成的有序结构材料,通过改变其平均折射率或晶格间距等参数可以实现对光的调控。响应性光子晶体结构与分子印迹技术相结合制备的分子印迹光子晶体化学传感器因特异性强、灵敏度高且具有自表达能力等优点而受到人们的青睐,为微量及痕量物质的检测提供了新思路。本文着重介绍了基于二维和三维光子晶体的传感材料,尤其是分子印迹光子晶体(MIPC)的制备方法、性能特点和应用研究进展,对分子印迹光子晶体在可视化检测的研究前景做了展望,对提高分辨率、稳定性等问题做了分析。
高分子水凝胶是一种具有三维网络结构的软材料,能够吸收并保持大量的水分。高分子水凝胶具有良好的生物相容性和力学性能,在生物医学和生物工程领域具有重要的应用价值。自愈合水凝胶是一种能够响应外界刺激并修复自身损伤的智能凝胶。相比传统水凝胶,自愈合水凝胶具有修复损伤的特性,近年来受到科学界的广泛关注。基于动态化学的自愈合水凝胶是一种能够通过动态的共价键或非共价键交联而重新形成三维网络结构从而修复损伤的新型自愈合水凝胶,该水凝胶能够快速多次地修复自身损伤,有良好的环境适应性,为开发多功能智能新材料奠定了基础。本文综述了近年来基于动态化学键构建自愈合水凝胶的研究进展,重点阐述了基于氢键相互作用、金属配位相互作用、主-客体相互作用、离子相互作用、亲疏水相互作用、亚胺键/酰腙键、硼酸酯键和二硫键的自愈合水凝胶的最新研究情况,同时提出了自愈合水凝胶的一些问题,并分析了未来的发展方向。
半纤维素基水凝胶是一种具有优异保水性、良好生物相容性和力学性能的三维网络状亲水聚合物,在软材料领域尤其是半纤维素基材料研究领域备受瞩目。本文综述了近年来半纤维素基水凝胶的研究进展,从化学交联和物理交联两个方面介绍了半纤维素基水凝胶的制备方法、形成机理和性能,比较了化学交联中光、酶、微波辐射和辉光放电电解等离子体等不同引发体系的差异,总结了半纤维素基水凝胶在药物控释、伤口敷料、高效吸附及3D打印等领域的最新应用和发展,并对半纤维素基水凝胶领域所面临的挑战进行了总结和展望,以期为新型半纤维素水凝胶的研究提供参考。