×
模态框(Modal)标题
在这里添加一些文本
Close
Close
Submit
Cancel
Confirm
×
模态框(Modal)标题
×
Toggle navigation
中文
RSS
E-mail Alert
Ei,ESCI
收录期刊
中国科学引文数据库(CSCD)核心期刊
中文核心期刊
文摘与引文数据库(Scopus)
剑桥科学文摘(CSA)
Toggle navigation
Home
About Journal
About Journal
About Sponsor
Editorial Board
Open Access
Author Guidelines
Instruction for Authors
Paper Template
Reference Template
Author's Statement
Copyright Agreement
Browse
Just Accepted
Current Issue
Online First
Archive
Topic
Special Issue
Recommended Articles
Most Article
Most Viewed
Most Download
Most Cited
Subscribe
Contact Us
Figure/Table detail
Effect of Co on microstructure and high temperature oxidation resistance of Ti45Al-8Nb-0.3Y alloy
XIE Xiaoqing, LI Xuan, LYU Wei, LAI Sheng, LIU Yi, LI Jianjun, XIE Wenling
Journal of Materials Engineering
, 2022, 50(
1
): 101-108. DOI:
10.11868/j.issn.1001-4381.2021.000116
Fig.7
Gibbs free energy changes for Ti, Al, Nb, Co and Y to respectively react with 1 mol O
2
to form TiO
2
, TiO, Al
2
O
3
, Nb
2
O
5
, CoO and Y
2
O
3
at different temperatures
Other figure/table from this article
Fig.1
SEM morphologies of the microstructures of Ti45Al-8Nb-0.3Y-
m
Co alloys
(a)
m
=0;(b)
m
=0.5;(c)
m
=1;(d)
m
=2
Table 1
EDS component analysis results of the typical phases marked in
fig. 1
Fig.2
XRD patterns of Ti45Al-8Nb-0.3Y-
m
Co alloys
Fig.3
Typical lamellar microstructures of Ti45Al-8Nb-0.3Y-
m
Co alloys
(a)
m
=0;(b)
m
=0.5;(c)
m
=1;(d)
m
=2
Fig.4
Mass gains and macrographic morphologies of Ti45Al-8Nb-0.3Y-
m
Co alloys after isothermal oxidation at 1000 ℃
(a)mass gains after oxidation for different time; (b)mass gains and macrographic morphologies of samples after oxidation for 100 h
Fig.5
SEM morphologies of surface (1) and cross-section and EDS analysis maps (2) of the oxide films formed on Ti45Al-8Nb-0.3Y-
m
Co alloys after oxidation at 1000 ℃ for 100 h
(a)
m
=0;(b)
m
=0.5;(c)
m
=1;(d)
m
=2
Fig.6
XRD patterns of oxide films on the surfaces of Ti45Al-8Nb-0.3Y-
m
Co alloys after oxidation at 1000 ℃ for 100 h
Table 2
EDS component analysis results of the typical phases marked in
fig. 5