Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (1): 101-110    DOI: 10.11868/j.issn.1001-4381.2014.001230
  综述 本期目录 | 过刊浏览 | 高级检索 |
热喷涂涂层与基体结合界面研究进展
柳建1, 孟凡军2, 殷凤良2, 陈永雄1, 梁秀兵1
1. 装甲兵工程学院 机械产品再制造国家工程研究中心, 北京 100072;
2. 装甲兵工程学院 装备再制造技术国防科技重点实验室, 北京 100072
Progress in Research on Bonding Interface Between Thermal Spraying Coating and Substrate
LIU Jian1, MENG Fan-jun2, YIN Feng-liang2, CHEN Yong-xiong1, LIANG Xiu-bing1
1. National Engineering Research Center for Mechanical Product Remanufacturing, Academy of Armored Forces Engineering, Beijing 100072, China;
2. National Key Laboratory for Remanufacturing, Academy of Armored Forces Engineering, Beijing 100072, China
全文: PDF(915 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 热喷涂再制造过程中,由于材料原因,涂层与基体之间往往存在一个异质界面问题。异质界面的形成与存在对再制造涂层服役性能有非常重要的影响。本文综述了热喷涂涂层与基体结合界面的研究发展现状,主要是结合界面形成机理和结合界面对涂层性能影响的研究发展现状。分析了热喷涂涂层与基体结合界面研究目前还存在的问题,并针对这些问题提出采用新技术与新手段深入研究涂层与基体结合界面的生长形成过程,揭示结合界面形成机理,并利用新表征方法实现涂层与基体结合界面形貌结构定量化表征,构建结合界面与涂层各项性能之间量化关系等的发展建议,进而为实现涂层性能的设计控制及寿命预测奠定基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
柳建
孟凡军
殷凤良
陈永雄
梁秀兵
关键词 再制造结合界面热喷涂涂层    
Abstract:In the process of thermal spraying remanufacturing,a heterogenerous bonding interface always exists between the coating and matrix due to the materials reason.And the formation and existence of the bonding interface has a significant influence on the coating performance.In this paper,research progress on bonding interface between thermal spraying coating and substrate was summarized,mainly focused on the forming mechanism of bonding interface and its effect on coating performance.The problems on the research of bonding interface between the thermal spraying coating and substrate were analyzed,and aiming at these problems,some suggestions were put forward,such as adopting new technology and approaches to investigate the growing process of the bonding interface in order to reveal its forming mechanism,exploiting new characterization method to realize quantitative characterization of bonding interface morphology and structure so as to build the quantitative relationship between bonding interface and coating properties,and etc. and to lay foundation for the implementation on design and control of the coating properties and life prediction.
Key wordsremanufacturing    bonding interface    thermal spraying    coating
收稿日期: 2014-10-27      出版日期: 2017-01-19
中图分类号:  TG117.1  
  TG434  
通讯作者: 柳建(1982-),男,博士,主要从事装备再制造技术方面的研究,联系地址:北京市丰台区杜家坎21号装甲兵工程学院机械产品再制造国家工程研究中心(100072),E-mail:baiduxiao@hotmail.com     E-mail: baiduxiao@hotmail.com
引用本文:   
柳建, 孟凡军, 殷凤良, 陈永雄, 梁秀兵. 热喷涂涂层与基体结合界面研究进展[J]. 材料工程, 2017, 45(1): 101-110.
LIU Jian, MENG Fan-jun, YIN Feng-liang, CHEN Yong-xiong, LIANG Xiu-bing. Progress in Research on Bonding Interface Between Thermal Spraying Coating and Substrate. Journal of Materials Engineering, 2017, 45(1): 101-110.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2014.001230      或      http://jme.biam.ac.cn/CN/Y2017/V45/I1/101
[1] 朱胜. 再制造技术创新发展的思考[J].中国表面工程,2013, 26(5):1-8. ZHU S. Ponderation and analysis on remanufacturing technology development[J]. China Surface Engineering, 2013, 26(5):1-8.
[2] YUMIBA N. Trend of thermal spray industry and applications[J]. Thermal Spray Technology, 2010, 2(3):7-13.
[3] 贺定勇, 蒋建敏, 周正, 等. 粉芯丝材在表面与再制造技术中的应用[J].电焊机, 2012,42(5):12-14. HE D Y, JIANG J M, ZHOU Z, et al. Application of cored wires for surface engineering and remanufacturing technology[J]. Electric Welding Machine, 2012,42(5):12-14.
[4] 曹芬燕,易剑,谢志鹏. 热喷涂纳米陶瓷涂层的研究现状及进展[J].陶瓷学报, 2011, 32(2):302-306. CAO F Y, YI J, XIE Z P. Recent situation and progress in thermal spray nano-ceramic coatings[J]. Journal of Ceramics, 2011, 32(2):302-306.
[5] YASUO N, NAGAI M. Thermal spray coating on conductor rolls in electroplating line[J]. Baosteel Technical Research, 2010, (Suppl 1):71-73.
[6] 常森, 张宝红, 徐宏妍. 镁合金表面热喷涂铝的防腐蚀研究[J].热加工工艺, 2011,40(14):124-127. CHANG S, ZHANG B H, XU H Y. Study on anti-corrosion of Al coating prepared by thermal spray on Mg alloy surface[J]. Hot Working Technology, 2011,40(14):124-127.
[7] 陈礼顺, 张斌, 蔡元钢. 热喷涂涂层在航空发动机上的应用及发展[J]. 航空制造技术, 2011,(11):34-37. CHEN L S, ZHANG B, CAI Y G. Application and development of thermal spray coating in aeroengine[J]. Aeronautical Manufacturing Technology, 2011,(11):34-37.
[8] 安云岐, 晁兵, 李承宇, 等. 电弧喷涂长效防腐技术在桥梁工程中的应用[J]. 热喷涂技术,2011,3(4):6-10. AN Y Q, CHAO B, LI C Y, et al. Application of arc spraying technology for long-term anti-corrosion in bridge engineering[J]. Thermal Spraying Technology, 2011,3(4):6-10.
[9] 张新格, 邓畅光,邓春明,等. NiCrAlY涂层抗氧化性及氧化过程中的微观结构演变[J].航空材料学报,2015, 35(5):21-26. ZHANG X G, DENG C G, DENG C M, et al. Oxidation resistance of NiCrAlY coating and evolution of microstructures during oxidation[J]. Journal of Aeronautical Materials,2015, 35(5):21-26.
[10] 琚正挺, 宣天鹏. 分形计算方法及在材料表界面中的应用[J].稀有金属快报,2006,25(3):1-5. JU Z T, XUAN T P. Calculation method of fractal dimension and application in the surface and interface of materials[J]. Rare Metals Letters,2006,25(3):1-5.
[11] 龚晓辉, 刘慎中. 铝合金上等离子喷涂金属镍层的研究[J]. 复合材料学报, 1999, 16(1):30-34. GONG X H, LIU S Z. Study of plasma spraying nickel coating on aluminum alloy[J]. Acta Materiae Compositae Sinica, 1999, 16(1):30-34.
[12] KIM K H, LEE C T, LEE C B, et al. Characterization of ceramic plasma-sprayed coatings, and interaction studies between U-Zr fuel and ceramic coated interface at an elevated temperature[J]. Thin Solid Films, 2011,519:6969-6973.
[13] 马凯, 孙大千, 宣兆志, 等. 镁合金表面电弧喷铝层的微观结构及界面分析[J]. 焊接学报, 2008, 29(12):89-93. MA K, SUN D Q, XUAN Z Z, et al. Microstructure and interface analysis of aluminum coating sprayed by electro-arc spraying on AZ91D magnesium alloy[J]. Transactions of the China Welding Institution, 2008, 29(12):89-93.
[14] 谷瑞玲, 刘航, 陆辛. 电爆炸喷涂Ti6Al4V涂层研究[J]. 热加工工艺, 2008, 37(1):59-61. GU R L, LIU H, LU X. Study on Ti6Al4V coating produced by electrical explosion spraying[J]. Hot Working Technology, 2008, 37(1):59-61.
[15] 李权,刘贵才. 热喷涂界面的观察与分析[J]. 电子显微学报, 2004,23(4):488. LI Q, LIU G C. Analysis on the interface of thermal spraying coating[J]. Journal of Chinese Electron Microscopy Society, 2004,23(4):488.
[16] CHEN H X, ZHOU K S, JIN Z P, et al. Diffusion and phase transformation on interface between substrate and NiCrAlY in Y-PSZ thermal barrier coatings[J]. Journal of Thermal Spray Technology, 2004, 13(4):515-520.
[17] 张红霞, 赵红利, 夏建元, 等. 感应重熔Ni60/WC涂层的界面组织与耐磨性研究[J]. 特种铸造及有色合金, 2011, 31(2):107-109. ZHANG H X, ZHAO H L, XIA J Y, et al. Microstructure and interface morphology as well as wear behavior of induction remelting Ni60/WC composite coating[J]. Special Casting and Nonferrous Alloy, 2011, 31(2):107-109.
[18] 钱声伟, 闻立时, 关侃. 热喷涂Mo、Al涂层界面的透射电镜研究[J]. 无机材料学报, 1991, (1):97-102. QIAN S W, WEN L S, GUAN K. TEM study on the interfaces of thermal sprayed Mo and Al coatings[J]. Journal of Inorganic Materials, 1991,(1):97-102.
[19] LI C J, LI C X, YANG G J, et al. Examination of substrate surface melting-induced splashing during splat formation in plasma spraying[J]. Journal of Thermal Spray Technology, 2006, 15(4):717-724.
[20] LI C J, LI J L. Evaporated-gas-induced splashing model for splat formation during plasma spraying[J]. Surface and Coatings Technology, 2004,184(1):13-23.
[21] IVOSEVIC M, GUPYA V, BALDONI J A, et al. Effect of substrate roughness on splatting behavior of HVOF sprayed polymer particles:modeling and experiments[J]. Journal of Thermal Spray Technology, 2006, 15(4):725-730.
[22] ZHANG J S, CUI H, DUAN X J, et al. An analysis of solidification behavior in spray deposited preform during spray forming process[J]. Materials Science and Engineering:A, 2000, 276(1-2):257-265.
[23] YANG K, LIU M, ZHOU K S, et al. Recent developments in the research of splat formation process in thermal spraying[J]. Journal of Materials, 2013,(2):1-15.
[24] PASANDIDEH-FARD M, CHANDRA S, MOSTAGHIMI J. A three-dimensional model of droplet impact and solidification[J]. International Journal of Heat and Mass Transfer, 2002, 45:2229-2242.
[25] 陈永雄. 自动化高速电弧喷涂碳钢涂层厚成形的数值模拟与试验[D]. 北京:装甲兵工程学院, 2010. CHEN Y X. Modeling and experimental investigations of thick carbon steel coating prepared by automatic high velocity arc spraying[D]. Beijing:Academy of Armored Forces Engineering, 2010.
[26] FAUCHAIS P, FUKUMOTO M, VARDELLE A, et al. Knowledge concerning splat formation:an invited review[J]. Journal of Thermal Spray Technology, 2004,13(3):337-360.
[27] BORSSARD S, MUNROE P R, TRAN A, et al. Study of the splat-substrate interface for a NiCr coating plasma sprayed onto polished aluminum and stainless steel substrates[J]. Journal of Thermal Spray Technology, 2010, 19(1-2):24-30.
[28] WU J, MUNROE P R, WITHY B, et al. Study of the splat-substrate interface for a PEEK coating plasma-sprayed onto aluminum substrates[J]. Journal of Thermal Spray Technology, 2010, 19(1-2):42-48.
[29] WANG Z, KULKAMI A, DESHPANDE S, et al. Effects of pores and interfaces on effective properties of plasma sprayed zirconia coatings[J].Acta Materialia, 2003, 51:5319-5334.
[30] LI W Y, LI C J, YANG G J. Effect of impact-induced melting on interface microstructure and bonding of cold-sprayed zinc coating[J]. Applied Surface Science, 2010, 257:1516-1523.
[31] YANG G J, LI C J, LI C X, et al. Improvement of adhesion and cohesion in plasma-sprayed ceramic coatings by heterogeneous modification of nonbonded lamellar interface using high strength adhesive infiltration[J]. Journal of Thermal Spray Technology, 2013, 22(1):36-47.
[32] LI H, KHOR K.A, CHENG P. Adhesive and bending failure of thermal sprayed hydroxyapatite coatings:Effect of nanostructures at interface and crack propagation phenomenon during bending[J]. Engineering Fracture Mechanics, 2007,74:1894-1903.
[33] BOURSE G, XU W J, MOUFTIEZ A, et al. Interfacial adhesion characterization of plasma coatings by V(z) inversion technique and comparison to interfacial indentation[J]. NDT&E International, 2012, 45(1):22-31.
[34] LEE H Y, JUNG S H, LEE S Y, et al. Correlation between Al2O3 particles and interface of Al-Al2O3 coatings by cold spray[J]. Applied Surface Science, 2005,252:1891-1898.
[35] WATANABE M, OWADA A, KURODA S, et al. Effect of WC size on interface fracture toughness of WC-Co HVOF sprayed coatings[J]. Surface and Coatings Technology, 2006, 201(3-4):619-627.
[36] LI W Y, LI C J, LIAO H L. Significant influence of particle surface oxidation on deposition efficiency, interface microstructure and adhesive strength of cold-sprayed copper coatings[J]. Applied Surface Science, 2010, 256:4953-4958.
[37] 邵贝羚, 刘安生, 王晓华, 等. 超音速喷涂界面的微结构与界面结合强度[J]. 电子显微学报, 1997, 16(3):271-276. SHAO B L, LIU A S, WANG X H, et al. Study on the microstructure and bond strength of HVOF sprayed interfaces[J]. Journal of Chinese Electron Microscopy Society, 1997, 16(3):271-276.
[38] ZHU S, LIU Y X, WANG X M, et al. Effect of processing parameters on porosity and bonding strength in supersonic particles deposition of Al-Si alloy[J]. Advanced Materials Research, 2013,721:332-336.
[39] 水露雨, 朱世根, 顾伟生, 等. 电接触强化对WC涂层与基体结合界面的影响[J]. 热加工工艺, 2011, 40(20):126-128. SHUI L Y, ZHU S G, GU W S, et al. Effect of electric contact heating on interface between WC coating and substrate[J]. Hot Working Technology, 2011, 40(20):126-128.
[40] 徐义胜, 周小平. 感应加热三元硼化物陶瓷涂层的组织及界面结构[J]. 热加工工艺, 2010, 39(20):135-138. XU Y S, ZHOU X P. Microstructure and interfacial structure of Mo2FeB2 cermet coating by induction heating[J]. Hot Working Technology, 2010, 39(20):135-138.
[41] 孔德军, 张永康, 鲁金忠, 等. 基于CO2激光热效应的喷塑涂层界面结合强度研究[J]. 材料研究学报, 2007, 21(1):92-96. KONG D J, ZHANG Y K, LU J Z, et al. Interfacial bonding strength of sprayed plastic coating based on CO2 laser thermal effect[J].Chinese Journal of Materials Research, 2007, 21(1):92-96.
[42] WATANABE M, KURODA S, YOKOYAMA K, et al. Modified tensile adhesion test for evaluation of interfacial toughness of HVOF sprayed coatings[J]. Surface and Coatings Technology, 2008, 202(9):1746-1752.
[43] 庄志明, 时海芳. 表面处理对AZ91D电弧喷涂铝层性能的影响[J].热加工工艺, 2006, 2009, 38(4):58-60. ZHUANG Z M, SHI H F. Effects of surface treatment on properties of arc-sprayed Al-coating on AZ91D[J]. Hot Working Technology, 2006, 2009, 38(4):58-60.
[44] 李小刚, 徐滨士, 马世宁. 基体表面的分数维对电弧喷涂层结合强度的影响[J]. 中国机械工程, 1999, 10(1):90-93. LI X G, XU B S, MA S N. Effect of fractal dimension of substrate surface on adhesive strength of arc spraying coating[J]. Machinery Engineering of China, 1999, 10(1):90-93.
[45] 马臣, 李慕勤, 尹柯, 等. 稀土对一次性自粘结铁基复合粉末喷涂涂层结合力的影响[J]. 中国稀土学报,2003, 21(6):733-735. MA C, LI M Q, YI K, et al. Influence of RE on cohesive force of spray coating from one-shot self-felt iron-based composite powder[J]. Journal of Chinese Rare Earth Society, 2003, 21(6):733-735.
[46] ZHAO P F, SHANG F L. Experimental study on the interfacial delamination in a thermal barrier coating system at elevated temperatures[J]. Journal of Zhejiang University Science A, 2010, 11(10):794-803.
[47] 毛卫国, 苏鹏, 张瑜, 等. 热障涂层体系界面屈曲破坏实验测试研究[J]. 失效分析与预防, 2012, 7(2):91-95. MAO W G, SU P, ZHANG Y, et al. Experimental investigation of interface buckling failure of thermal barrier coating systems[J]. Failure Analysis and Prevention, 2012, 7(2):91-95.
[48] LI C J, LI Y, YANG G J, et al. Evolution of lamellar interface cracks during isothermal cyclic test of plasma-sprayed 8YSZ coating with a columnar-structured YSZ interlayer[J]. Journal of Thermal Spray Technology, 2013, 22(8):1374-1382.
[49] ARAUJO P,CHICOT D, STAIA M et al. Residual stresses and adhesion of thermal spray coatings[J]. Surface Engineering, 2005,21(1):35-40.
[50] 黄伟九, 李兆峰, 刘明,等. 热扩散对镁合金锌铝涂层界面组织和性能的影响[J].材料热处理学报,2007,28(2):106-109. HUANG W J, LI Z F, LIU M, et al. Influence of heat diffusion on the interface microstructure and properties of zinc-aluminum coating on magnesium alloy[J]. Transactions of Materials and Heat Treatment, 2007,28(2):106-109.
[51] RABIEI A, EVANS A G. Failure mechanisms associated with the thermally grown oxide in plasma-sprayed thermal barrier coatings[J].Acta Mater,2000,48(15):3963-3976.
[52] HE M Y, EVANS A G, HUTCHINSON J W. The ratcheting of compressed thermally grown thin films on ductile substrates[J].Acta Mater,2000,48(10):2593-2601.
[53] EVANS A G, HUTCHINSON J W, HE M Y. Mechanics-based scaling laws for the durability of thermal barrier coatings[J]. Materials Science,2001, 46(3-4):249-271.
[54] HE M Y, HUTCHINSON J W, EVANS A G.Simulation of stresses and delamination in a plasma-sprayed thermal barrier system upon thermal cycling[J]. Material Science and Engineering:A,2003,345(1-2):172-178.
[55] BECK T, SCHWEDA M, SINGHEISEK L. Influence of interface roughness, substrate and oxide-creep on damage evolution and lifetime of plasma sprayed zirconia-based thermal barrier coatings[J]. Procedia Engineering, 2013,55(12):191-198.
[56] 尚晶, 马冰, 张倩, 等. 不同界面形状及结构的涂层残余热应力的有限元分析[J]. 兵器材料科学与工程,2008,31(2):70-74. SHANG J, MA B, ZHANG Q, et al. Finite element analysis of residual thermal stress in different interracial shape and structure of coatings[J]. Ordnance Material Science and Engineering,2008,31(2):70-74.
[57] 王志平, 韩志勇, 陈亚军, 等. 热障涂层的三维界面形貌与热应力关系[J]. 焊接学报, 2011, 32(1):21-25. WANG Z P, HAN Z Y, CHEN Y J, et al. Relations between 3 dimension interface topography with thermal stress of thermal barrier coatings[J]. Transactions of the China Welding Institution, 2011, 32(1):21-25.
[58] 姚国凤, 马红梅, 王晓英, 等. 热障涂层界面形貌尺寸与残余应力的关系[J]. 金属热处理, 2005,30(10):43-46. YAO G F, MA H M, WANG X Y, et al. Relation between interface topography dimension and residual stress in thermal barrier coatings[J]. Heat Treatment of Metals, 2005, 30(10):43-46.
[59] AHRENS M, VAβEN R, STOVER D. Stress distributions in plasma-sprayed thermal barrier coatings as a function of interface roughness and oxide scale thickness[J]. Surface and Coatings Technology, 2002,161(1):26-35.
[60] ZHANG W X, FAN X L, WANG T J. The surface cracking behavior in air plasma sprayed thermal barrier coating system incorporating interface roughness effect[J]. Applied Surface Science, 2011, 258:811-817.
[61] 魏洪亮, 杨晓光, 齐红宇. 等离子涂层典型界面损伤与破坏的数值模拟[J]. 北京航空航天大学学报, 2007,33(10):1141-1145. WEI H L, YANG X G, QI H Y. Numerical simulation of damage and fracture on typical interfaces of plasma sprayed thermal barrier coatings[J]. Journal o f Beijing University of Aeronautics and Astronautics, 2007,33(10):1141-1145.
[62] 丁艳霞. 热障涂层中界面形貌对涂层系统中应力影响的研究[D].长春:吉林大学, 2007. DING Y X. Study on the effect of interface topography upon internal stress in the thermal barrier coatings[D]. Changchun:University of Jilin, 2007.
[63] 侯平均, 王汉功, 查柏林,等. 界面粗糙度对双层热障涂层残余应力影响的数值模拟[J]. 热加工工艺, 2007, 36(7):82-85. HOU P J, WANG H G, ZHA B L, et al. Numerical simulation for effect of interface roughness on residual stress of double-layer thermal barrier coatings[J]. Hot Working Technology, 2007, 36(7):82-85.
[64] 徐颖强, 汪震隆, 李剑锋. 热障涂层抗氧化夹层界面残余应力分析[J]. 中国机械工程, 2008, 19(16):2000-2003. XU Y Q, WANG Z L, LI J F. Analysis of interfacial residual stress in thermal barrier coatings containing oxidation-resistance interlayer[J]. Machinery Engineering of China, 2008, 19(16):2000-2003.
[65] 李振军, 吴惠云. 基体条件对Sm2Zr2O7/YSZ双陶瓷层热障涂层界面残余热应力的影响[J].中国陶瓷, 2012, 48(6):21-26. LI Z J, WU H Y. The effect of residual thermal stresses at the interface of Sm2Zr2O7/YSZ double ceramic thermal barrier coating on matrix conditions[J].China Ceramics, 2012, 48(6):21-26.
[66] 路学成, 阎殿然, 任莹. 等离子喷涂陶瓷涂层的界面研究[J]. 陶瓷学报, 2009, 30(1):117-123. LU X C, YAN D R, REN Y. Research on interface of plasma sprayed ceramic coating[J]. Journal of Ceramics, 2009, 30(1):117-123.
[67] 张永康, 孔德军, 冯爱新, 等. 涂层界面结合强度检测研究(I):涂层结合界面应力的理论分析[J]. 物理学报, 2006,55(6):2897-2910. ZHANG Y K, KONG D J, FENG A X, et al. Study on the determination of interfacial binding strength of coatings (Ⅰ):theoretical analysis of stress in thin film binding interface[J]. Acta Physica Sinica, 2006,55(6):2897-2910.
[68] FU S C, MA Y, GONG S K. Effect of microstructure of interface between MCrAlY coating and substrate on damping property[J]. Procedia Engineering, 2012, 27:1024-1032.
[69] KIM J H, PARK M C. Evaluation of functionally graded thermal barrier coatings fabricated by detonation gun spray technique[J]. Surface and Coatings Technology, 2003,168(2-3):275-280.
[70] ZHANG X C, XU B S, WANG H D, et al. Application of functionally graded interlayer on reducing the residual stress discontinuities at interfaces within a plasma-sprayed thermal barrier coating[J]. Surface and Coatings Technology, 2007, 201(9-11):5716-5719.
[71] KOKINI K, DEJONGE J, RANGARAJ S, et al. Thermal shock of functionally graded thermal barrier coatings with similar thermal resistance[J]. Surface and Coatings Technology, 2002,154(2-3):223-231.
[72] 郑雪萍, 刘胜林. 热喷涂技术制备纳米涂层的研究现状[J]. 硬质合金, 2009, 26(1):59-64. ZHENG X P, LIU S L. Research status of nanostructured coating by thermal spray technology[J]. Cemented Carbide, 2009, 26(1):59-64.
[73] 徐滨士. 再制造工程与纳米表面工程[J].金属热处理, 2006,31(增刊1):1-8. XU B S. Remanufacturing engineering and nano surface engineering[J]. Heat Treatment of Metals, 2006, 31(Suppl 1):1-8.
[74] RICHER P, JODOIN B, AJDELSZTAJN L, et al. Substrate soughness and thickness effects on cold spray nano-crystalline Al-Mg coatings[J]. Journal of Thermal Spray Technology, 2006, 15(2):246-254.
[1] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[2] 李为民, 彭超义, 杨金水, 邢素丽. PTFE/epoxy全有机超疏水涂层制备[J]. 材料工程, 2020, 48(7): 162-169.
[3] 唐长斌, 卢宇轩, 王飞, 黄平, 于丽花, 薛娟琴. 用于水体中有机污染物电催化降解的非贵金属氧化物阳极的研究进展[J]. 材料工程, 2020, 48(6): 62-72.
[4] 王霞, 王辉, 侯丽, 蒋欢, 周雯洁. 超疏水防腐蚀涂层的研究进展[J]. 材料工程, 2020, 48(6): 73-81.
[5] 侯桂香, 谢建强, 姚少巍, 张云杰, 蓝文. 生物基没食子酸环氧树脂/纳米氧化锌抗菌涂层的制备与性能[J]. 材料工程, 2020, 48(3): 34-39.
[6] 杜娟, 魏子明, 郑世辑, 陈亚军, 胡雪兰, 汪睿. 金属表面制备绿色环保防腐膜技术的研究进展[J]. 材料工程, 2020, 48(2): 22-31.
[7] 何代华, 朱威, 刘翔, 刘平. 硅酸钙及硅酸钠浓度对钛合金表面生物活性涂层的影响[J]. 材料工程, 2020, 48(10): 148-156.
[8] 周莉, 柳汀, 郑典亮, 许勇刚. 选择表面工艺改性的CIPs涂层及其氧化物的吸波性能[J]. 材料工程, 2019, 47(9): 132-138.
[9] 曾威, 毛杰, 马景涛, 邓畅光, 邓子谦, 邓春明, 宋鹏. 表面粗糙度对PS-PVD热障涂层陶瓷层沉积的影响[J]. 材料工程, 2019, 47(8): 161-168.
[10] 欧阳佩旋, 弭光宝, 李培杰, 何良菊, 曹京霞, 黄旭. NiCrAl/YSZ/NiCrAl-B.e复合涂层对α+β型高温钛合金燃烧产物的影响[J]. 材料工程, 2019, 47(5): 43-52.
[11] 王勇刚, 刘和剑, 回丽, 职山杰, 刘海青. 激光熔覆原位自生碳化物增强自润滑耐磨复合涂层的高温摩擦学性能[J]. 材料工程, 2019, 47(5): 72-78.
[12] 周仲炎, 庄宿国, 杨霞辉, 王勉, 罗迎社, 刘煜, 刘秀波. Ti6Al4V合金激光原位合成自润滑复合涂层高温摩擦学性能[J]. 材料工程, 2019, 47(3): 101-108.
[13] 张斌, 陈岁元, 梁京, 刘常升, 崔彤, 王玫. 短应力线轧机激光再制造现状及发展趋势[J]. 材料工程, 2019, 47(11): 43-52.
[14] 王瑶, 赵雪妮, 党新安, 杨璞, 魏森森, 张伟刚, 刘庆瑶. 钢表面梯度结构耐腐蚀铝涂层的制备及研究[J]. 材料工程, 2019, 47(11): 148-154.
[15] 赵海朝, 梁秀兵, 乔玉林, 柳建, 张志彬, 仝永刚. 激光熔覆高熵合金涂层的研究进展[J]. 材料工程, 2019, 47(10): 33-43.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn