Please wait a minute...
 
2222材料工程  2018, Vol. 46 Issue (2): 93-98    DOI: 10.11868/j.issn.1001-4381.2014.001371
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
不同基体热浸镀铝镀层组织和高温磨损行为
周德琴, 陈伟, 张秋阳, 周银, 崔向红(), 王树奇
江苏大学 材料科学与工程学院, 江苏 镇江 212013
Microstructure and High-temperature Wear Behavior of Hot-dipped Aluminized Coating on Different Substrate Materials
De-qin ZHOU, Wei CHEN, Qiu-yang ZHANG, Yin ZHOU, Xiang-hong CUI(), Shu-qi WANG
School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
全文: PDF(1888 KB)   HTML ( 20 )  
输出: BibTeX | EndNote (RIS)      
摘要 

选取45钢和H13钢进行热浸镀铝和高温扩散处理,采用X射线衍射(XRD)、扫描电镜(SEM)、能谱仪(EDS)等微观分析手段表征镀层物相、形貌和成分。采用销盘式高温磨损试验机对比研究不同基体下镀层的干滑动高温磨损行为,并探讨其磨损机制。结果表明:扩散层均以FeAl和Fe3Al韧性相为主,两相之间界面周围存在平行于表面的Kikendall孔洞;镀层与45钢基体过渡平缓,结合良好,而与H13钢界面之间存在颗粒聚集,导致镀层与H13钢基体结合较差;45钢镀层在400℃/50~200N具有较好耐磨性,随环境温度升高,出现轻微-严重的磨损转变;H13钢镀层在400℃磨损率较低,在600℃也仅略高于400℃;Fe-Al镀层的磨损机制以氧化轻微磨损为主,45钢镀层在600℃出现塑性挤出磨损。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周德琴
陈伟
张秋阳
周银
崔向红
王树奇
关键词 金属间化合物高温磨损热浸镀铝磨损行为磨损机制    
Abstract

The aluminized 45 and H13 steel were prepared via hot-dipped aluminizing and subsequently high-temperature diffusion treatment. The phase, morphology and composition of aluminized coating were characterized by XRD, SEM and EDS methods. Comparative study was performed on unlubricated sliding wear behavior of plating under different substrates on a pin-on-disc wear tester, and the wear mechanism was explored. The results show that the coating is composed of ductile phases FeAl and Fe3Al. Kikendall porosity parallel to the surface exists around the interface of the two phases; because of the carbide particles agglomeration, the bond between the coating and H13 steel is apparently inferior to that in the case of 45 steel; the aluminized 45 steel possesses an excellent wear resistance under 50-200N at 400℃, whereas mild-to-severe wear transition occurs when the temperature increases to 600℃. The wear rate of the aluminized H13 steel reaches the lowest at 400℃, then slightly increases at 600℃. The wear mechanisms of Fe-Al coating are mainly predominated by oxidative mild wear, whereas the extrusion wear prevails in the process for aluminized 45 steel at 600℃.

Key wordsintermetallic compound    high-temperature wear    hot-dipped aluminizing    wear behavior    wear mechanism
收稿日期: 2014-11-20      出版日期: 2018-02-01
中图分类号:  TH117  
基金资助:国家自然科学基金资助项目(51071078);江苏省普通高校研究生科技创新项目资助(KYCX-1770);江苏省高端结构材料重点实验室开放基金资助项目(hsm1403)
通讯作者: 崔向红     E-mail: miracle8980@126.com
作者简介: 崔向红(1963-), 女, 副教授, 博士, 主要从事金属基复合材料及摩擦磨损方面的研究工作, 联系地址:江苏省镇江市学府路301号江苏大学材料科学与工程学院(212013), E-mail: miracle8980@126.com
引用本文:   
周德琴, 陈伟, 张秋阳, 周银, 崔向红, 王树奇. 不同基体热浸镀铝镀层组织和高温磨损行为[J]. 材料工程, 2018, 46(2): 93-98.
De-qin ZHOU, Wei CHEN, Qiu-yang ZHANG, Yin ZHOU, Xiang-hong CUI, Shu-qi WANG. Microstructure and High-temperature Wear Behavior of Hot-dipped Aluminized Coating on Different Substrate Materials. Journal of Materials Engineering, 2018, 46(2): 93-98.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2014.001371      或      http://jme.biam.ac.cn/CN/Y2018/V46/I2/93
Material C Cr Mo V Si Mn S P Fe
45 steel 0.43 0.22 0.27 0.63 ≤0.03 ≤0.03 Bal
H13 steel 0.41 5.23 1.15 0.92 1.02 0.34 ≤0.03 ≤0.03 Bal
Table 1  基体材料的化学成分(质量分数/%)
Fig.1  热浸镀铝钢表面的XRD谱图
(a)45钢; (b)H13钢
Fig.2  45钢(a)和H13钢(b)热浸镀铝镀层剖面形貌
Material Outer layer Inner layer Substrate
45 steel 480-500 320-350 200-220
H13 steel 580-620 400-450 500-550
Table 2  45钢和H13钢基体及镀层的显微硬度
Fig.3  45钢和H13钢镀层在不同温度下的磨损率
Fig.4  45钢镀层磨面形貌
(a)400℃/150N;(b)400℃/250N;(c)600℃/50N;(d)600℃/100N
Fig.5  H13钢镀层磨面形貌
(a)400℃/150N;(b)400℃/300N;(c)600℃/50N;(d)600℃/300N
1 张玉军, 李爱菊, 李春胜, 等. Fe-Al基金属间化合物粉末的制备[J]. 复合材料学报, 1999, 16 (4): 40- 43.
1 ZHANG Y J , LI A J , LI C S , et al. Preparation of Fe-Al intermetallic compounds powder[J]. Acta Materiae Compositae Sinica, 1999, 16 (4): 40- 43.
2 STOLOFF N S . Iron aluminides:present status and future prospects[J]. Materials Science and Engineering:A, 1998, 258 (1/2): 1- 14.
3 刘莹莹, 郑立静, 张虎. 快速凝固Al-Fe-V-Si耐热铝合金研究进展[J]. 材料工程, 2015, 43 (11): 91- 97.
doi: 10.11868/j.issn.1001-4381.2015.11.015
3 LIU Y Y , ZHENG L J , ZHANG H . Research progress in Al-Fe-V-Si heat resistant alloys prepared by rapid solidification[J]. Journal of Materials Engineering, 2015, 43 (11): 91- 97.
doi: 10.11868/j.issn.1001-4381.2015.11.015
4 McKAMEY C G , DEVAN J H , TORTORELL P F , et al. A review of recent developments in Fe3Al-based alloys[J]. Journal of Materials Research, 1991, 6, 1779- 1805.
doi: 10.1557/JMR.1991.1779
5 MAUPIN H E , WILSON R D , HAWK J A . Wear deformation of ordered Fe-Al intermetallic alloys[J]. Wear, 1993, 62/164, 432- 440.
6 JORDAN J L , DEEVI S C . Vacancy formation and effects in FeAl[J]. Intermetallics, 2003, 11 (6): 507- 528.
doi: 10.1016/S0966-9795(03)00027-X
7 ZHU S M , GUAN X S , SHIBATA K , et al. Microstructure and mechanical and tribological properties of high carbon Fe3Al and FeAl intermetallic alloys[J]. Materials Transaction, 2002, 43, 36- 41.
doi: 10.2320/matertrans.43.36
8 KIM Y S , KIM Y H . Sliding wear behavior of Fe3Al-based alloys[J]. Materials Science and Engineering:A, 1998, 258 (1/2): 319- 324.
9 YANG J , LA P Q , LIU W M , et al. Tribological properties of Fe3Al-Fe3AlC0.5 composites under dry sliding[J]. Intermetallics, 2005, 13 (11): 1184- 1189.
doi: 10.1016/j.intermet.2005.03.005
10 YANG J , LA P Q , LIU W M , et al. Tribological properties of FeAl intermetallics under dry sliding[J]. Wear, 2004, 257 (1/2): 104- 109.
11 YANG J , LA P Q , LIU W M , et al. Microstructure and properties of Fe3Al-Fe3AlC0.5 composites prepared by self-propagating high temperature synthesis casting[J]. Materials Science and Engineering:A, 2014, 382 (1/2): 8- 14.
12 MAIPIN H E , WILSON R D , HAWK J A . An abrasive wear study of ordered FeAl[J]. Wear, 1992, 159 (2): 241- 247.
doi: 10.1016/0043-1648(92)90307-T
13 LIU C T , LEE E H , McKAMEY C G . An environmental effect as the major cause for room-temperature embrittlement in FeAl[J]. Scripta Metallurgica, 1989, 23 (6): 875- 880.
doi: 10.1016/0036-9748(89)90263-9
14 LIU C T , GEORGE E P , MAZIASZ P J , et al. Recent advances in B2 iron aluminide alloys:deformation, fracture and alloy design[J]. Materials Science and Engineering:A, 1998, 258, 84- 98.
doi: 10.1016/S0921-5093(98)00921-6
15 徐滨士, 朱子新, 刘燕, 等. 高速电弧喷涂Fe-Al金属间化合物涂层[J]. 中国有色金属学报, 2004, 14 (增刊1): 154- 158.
15 XU B S , ZHU Z X , LIU Y , et al. Fe-Al intermetallics coating produced by high velocity arc spraying[J]. The Chinese Journal of Nonferrous Metals, 2004, 14 (Suppl 1): 154- 158.
16 朱子新, 刘燕, 徐滨士, 等. 热处理对Fe-Al/WC复合涂层的组织及磨损性能的影响[J]. 材料工程, 2004, (7): 3- 5.
16 ZHU Z X , LIU Y , XU B S , et al. Influence of heat treatment on microstructure and wear behavior of Fe-Al/WC composite coatings[J]. Journal of Materials Engineering, 2004, (7): 3- 5.
17 LI C J , WANG H T , YANG G J , et al. Characterization of high-temperature abrasive wear of cold-sprayed FeAl intermetallic compound coating[J]. Journal of Thermal Spray Technology, 2011, 20 (1/2): 227- 233.
18 HEUMANN T , DITTRICH N . Structure character of the Fe2Al5 intermetallics compound in hot dip aluminizing process[J]. Z Metallk, 1950, 50, 617- 625.
19 廖远禄, 王树奇, 张秋阳, 等. 扩散退火温度对碳钢热浸镀铝层的影响[J]. 钢铁钒钛, 2013, (5): 95- 98.
doi: 10.7513/j.issn.1004-7638.2013.05.019
19 LIAO Y L , WANG S Q , ZHANG Q Y , et al. Effect of diffusion annealing temperature on the coating of hot-dip aluminized carbon steel[J]. Irons Steel Vanadium Titanium, 2013, (5): 95- 98.
doi: 10.7513/j.issn.1004-7638.2013.05.019
20 KOBAYASHI S , YAKOU T . Control of intermetallic compound layers at interface between steel and aluminum by diffusion-treatment[J]. Materials Science and Engineering:A, 2002, 338, 44- 53.
doi: 10.1016/S0921-5093(02)00053-9
21 RIGNEY D A . Some thoughts on sliding wear[J]. Wear, 1992, 152 (1): 187- 192.
doi: 10.1016/0043-1648(92)90214-S
22 STOTT F H . High-temperature sliding wear of metals[J]. Tribology International, 2002, 35 (8): 489- 495.
doi: 10.1016/S0301-679X(02)00041-5
23 KUPKA M . High temperature strengthening of the FeAl intermetallic phase-based alloy[J]. Intermetallics, 2006, 14 (2): 149- 155.
doi: 10.1016/j.intermet.2005.04.013
24 KOEPPE M , HARTIG C H , MECKING H . Anomalies of the plastic yield stress in the intermetallic compound Fe-30at.% A[J]. Intermetallics, 1999, 7 (3/4): 425- 422.
25 MORRIS D G. International symposium on nickel and iron aluminides[C]//Materials Park, OH: ASM International, 1997: 73.
[1] 陈爽, 韩雪艳, 安帅帅, 王勇杰, 李仕华. 基体表面粗糙度对MoS2/Ti薄膜摩擦磨损性能的影响[J]. 材料工程, 2022, 50(8): 169-177.
[2] 王涛, 武传松. 超声对铝/镁异质合金搅拌摩擦焊接成形的影响[J]. 材料工程, 2022, 50(5): 20-34.
[3] 李鹏, 邹存柱, 董红刚, 吴宝生, 李超, 杨跃森, 闫德俊. Fe/Al异质金属接头界面组织演变、生长动力学及力学性能[J]. 材料工程, 2022, 50(5): 43-51.
[4] 李波, 李圣鑫, 张执南, 张坚, 熊光耀, 沈明学. 热氧老化作用对丁腈橡胶力学性能和摩擦学行为的影响[J]. 材料工程, 2021, 49(5): 114-121.
[5] 张桂源, 李于朋, 宫文彪, 宫明月, 崔恒. Zn对钢/铝异种金属搅拌摩擦焊接头界面组织及性能的影响[J]. 材料工程, 2020, 48(8): 149-156.
[6] 张军, 刘崇宇. 粉末冶金法制备CNT和SiC混杂增强铝基复合材料的摩擦磨损性能[J]. 材料工程, 2020, 48(11): 131-139.
[7] 卢汉桥, 李玉龙, 余啸, 龙维峰, 江建锋. 回流冷却与等温时效过程中Sn-35Bi-1Ag/Ni-P/Cu焊点组织演变[J]. 材料工程, 2018, 46(6): 95-100.
[8] 雍薇, 黄兴民, 张雷, 程乾, 戴光泽. 热浸镀铝球墨铸铁失效机理研究[J]. 材料工程, 2016, 44(8): 77-84.
[9] 黄健康, 邵玲, 石玗, 顾玉芬. 铝合金与镀锌钢脉冲旁路耦合电弧GMAW熔钎焊搭接工艺及接头性能的研究[J]. 材料工程, 2014, 0(3): 21-26,33.
[10] 张亮, 韩继光, 何成文, 郭永环, 张剑. 热循环对SnAgCu(纳米Al)/Cu焊点界面与性能影响[J]. 材料工程, 2014, 0(3): 55-59.
[11] 张果, 杜军, 李文芳, 豆琦, 蔡添祥. Ca和La对Mg-5Sn-2Si合金组织和蠕变性能的影响[J]. 材料工程, 2013, 0(4): 81-84.
[12] 杨唐, 刘炳, 文锋, 郭璐, 赵明露. Al2O3颗粒增强共晶铝锰基复合材料的腐蚀磨损性能[J]. 材料工程, 2013, 0(3): 83-89.
[13] 王红星, 杨少锋, 柳秉毅, 张炎. 料浆包渗温度对渗Si层组织结构和性能的影响[J]. 材料工程, 2013, (2): 69-73.
[14] 熊华平, 毛建英, 陈冰清, 王群, 吴世彪, 李晓红. 航空航天轻质高温结构材料的焊接技术研究进展[J]. 材料工程, 2013, 0(10): 1-12.
[15] 陈海燕, 揭晓华, 张海燕, 郭黎. 添加0.05%(La+Ce)对SnXCuNi焊料与Cu基板间界面组织的影响[J]. 材料工程, 2011, 0(9): 29-32,38.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn