Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (1): 78-84    DOI: 10.11868/j.issn.1001-4381.2014.001547
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
高碳钢奥氏体晶粒长大的预测
麻晗, 廖舒纶
江苏省(沙钢)钢铁研究院, 江苏 张家港 215625
Prediction on Austenite Grain Growth in High Carbon Steel
MA Han, LIAO Shu-lun
Institute of Research of Iron & Steel, Shasteel, Zhangjiagang 215625, Jiangsu, China
全文: PDF(987 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 借助于高温共聚焦显微镜(CLSM)、透射电镜(TEM)研究含Ti钢和无Ti钢的奥氏体晶粒长大行为。试样在1123~1473K之间保温60min时测量一系列温度下不同保温时间的奥氏体晶粒尺寸。结果表明:两种钢奥氏体晶粒尺寸随着温度的上升而增大;另外,两种钢奥氏体晶粒尺寸随时间的延长而长大,并符合抛物线方程。并且,观察到了第二相粒子,用第二相粒子的熟化公式和体积公式分别计算两种钢的含Ti粒子尺寸与体积分数。同时,采用修正的Gladman公式预测两种钢的奥氏体晶粒长大,实验结果和预测结果吻合较好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
麻晗
廖舒纶
关键词 奥氏体晶粒尺寸高碳钢含Ti钢析出物    
Abstract:The austenite grain growth behavior of Ti-bearing and Ti-free steel was investigated using confocal laser scanning microscope (CLSM) and transmission electron microscope (TEM).Samples were held for 60min at 1123-1473K and then austenite grain sizes for different holding time at a series of temperatures were measured.The results show that austenite grain size of both steels increases with the increase of temperature.Besides,the austenite grain size of both steels grows with the holding time,which meets parabolic equation.The second phase particle was observed.The equation of Ostwald ripening was introduced to calculate the size of particle,and the volume fraction equation of second phase particle was applied to calculate the volume fraction of particle.Meanwhile,the modified Gladman model was adopted to predict austenite grain growth.The predicted results agree well with the measured results.
Key wordsaustenite grain size    high carbon steel    Ti-bearing steel    precipitation
收稿日期: 2014-12-26      出版日期: 2017-01-19
中图分类号:  TG156.1  
通讯作者: 麻晗(1977-),男,博士,高级工程师,主要从事棒线材新产品开发,联系地址:江苏省张家港市锦丰镇沙钢钢铁研究院(215625),E-mail:mahan-iris@shasteel.cn     E-mail: mahan-iris@shasteel.cn
引用本文:   
麻晗, 廖舒纶. 高碳钢奥氏体晶粒长大的预测[J]. 材料工程, 2017, 45(1): 78-84.
MA Han, LIAO Shu-lun. Prediction on Austenite Grain Growth in High Carbon Steel. Journal of Materials Engineering, 2017, 45(1): 78-84.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2014.001547      或      http://jme.biam.ac.cn/CN/Y2017/V45/I1/78
[1] 杨杰,邹金文,王晓峰,等.热处理对FGH96合金异常晶粒长大的影响[J].材料工程,2014,(8):1-7. YANG J, ZOU J W, WANG X F, et al. Effect of heat treatment on abnormal grain growth of FGH96 superalloy[J]. Journal of Materials Engineering, 2014, (8):1-7.
[2] 许文勇,李周,张国庆,等.喷射成形GH742y合金晶粒长大规律的研究[J].航空材料学报,2006,26(3):52-55. XU W Y, LI Z, ZHANG G Q, et al. Evaluation of grain growth of spray formed superalloy GH742y[J].Journal of Aeronautical Materials,2006,26(3):52-55.
[3] JIAO S, PENNING J, LEYSEN F, et al. The modeling of the grain growth in a continuous reheating process of a low carbon Si-Mn bearing TRIP steel[J]. ISIJ International, 2000, 40(10):1035-1040.
[4] DUAN L N, WANG L M, LIU Q Y, et al. Austenite grain growth behavior of X80 pipeline steel in heating process[J].Journal of Iron and Steel Research, International, 2010, 17(3):62-66.
[5] XU Y W, TANG D, SONG Y, et al. Prediction model for the austenite grain growth in a hot rolled dual phase steel[J]. Materials and Design, 2012,36:275-278.
[6] MAALEKIAN M, RADIS R, MILITZER M, et al. In situ measurement and modeling of austenite grain growth in Ti/Nb microalloyed steel[J]. Acta Materialia, 2012,60(3):1015-1026.
[7] ZAJAC S, SIWECKI T, HUTCHINSO W B, et al. Strengthening mechanisms in vanadium microalloyed steels intended for long products[J]. ISIJ International, 1998,38(10):1130-1139.
[8] STASKO R, ADRIAN H, ADRIAN A. Effect of nitrogen and vanadium on austenite grain growth kinetics of a low alloy steel[J]. Materials Characterization, 2006,56(4-5):340-347.
[9] SHA Q Y, SUN Z Q. Grain growth behavior of coarse-grained austenite in a Nb-V-Ti microalloyed steel[J]. Materials Science and Engineering:A, 2009,523(1-2):77-84.
[10] GAO N, BAKER T N. Austenite grain growth behaviour of microalloyed Al-V-N and Al-V-Ti-N steels[J]. ISIJ International, 1998, 38(7):744-751.
[11] KIKUCHI N, NABESHIMA S, KISHIMOTO Y, et al. Micro-structure refinement in low carbon high manganese steels through Ti-deoxidation:austenite grain growth and decomposition[J]. ISIJ International, 2009,49(7):1036-1045.
[12] 钟云龙,刘国权,刘胜新,等.新型油井管钢33Mn2V的奥氏体晶粒长大规律[J].金属学报,2003,39(7):699-703. ZHONG Y L, LIU G Q, LIU S X, et al. Austenite grain growth behavior of steel 33Mn2V designed for oil-well tubes[J]. Acta Metallurgica Sinica,2003,39(7):699-703.
[13] 高振英,孙福玉.中碳钢奥氏体晶粒生长动力学的研究[J].钢铁研究学报,1989,1(4):59-63. GAO Z Y, SUN F Y. Study of austenite grain growth kinetics in medium carbon steel[J].Journal of Iron and Steel Research,1989,1(4):59-63.
[14] ZHANG J, BAKER T N. Effect of equalisation time on the austenite grain size of simulated thin slab direct charged (TSDC) vanadium microalloyed steels[J]. ISIJ International, 2003,43(12):2015-2022.
[15] 陈茂爱,亓效刚,傅一飞.Ti-Nb微合金钢及焊接热影响区中的第二相粒子[J].特殊钢, 2004, 25(3):10-13. CHEN M A, QI X G, FU Y F. Secondary phase particles in Ti-Nb microalloyed steel and coarse-grained heat affected zone[J]. Special Steel, 2004, 25(3):10-13.
[16] 雍岐龙,田建国,杨文勇,等.钛在钢中的物理冶金学基础数据[J].云南工业大学学报,1999,15(2):7-10. YONG Q L, TIAN J G, YANG W Y, et al. Physical metallurgical data of titanium in steels[J]. Journal of Yunnan Polytechnic University, 1999, 15(2):7-10.
[17] LOU Y Z, LIU D L, NI X Q. Precipitates in steels with Ti additive produced by CSP process[J]. Journal of Iron and Steel Research, International, 2009,16(4):60-66.
[18] ASKELAND D R. The Science and Engineering of Materials[M].2nd ed. London:Chapman and Hall, 1990.
[19] 谢长生,何向山,崔崑.奥氏体热作工具钢的晶粒粗化行为及合金元素的作用[J].金属学报,1986,22(6):461-469. XIE C S, HE X S, CUI K. Grain coarsening behavior towards austenitic hot work tool steels and effect of alloying elements[J]. Acta Metallurgica Sinica,1986,22(6):461-469.
[1] 乔志霞, 李连进, 宁保群. 奥氏体化条件对675装甲钢中马氏体相变的影响[J]. 材料工程, 2014, 0(7): 5-9.
[2] 吴忠旺, 赵宇, 李军, 李波. 后天抑制剂取向硅钢析出物的研究[J]. 材料工程, 2012, 0(7): 55-58.
[3] 李小军, 吴建生, 章靖国, 史海生, 林一坚. 喷射成形超高碳钢超塑性变形后的微观组织[J]. 材料工程, 2004, 0(6): 20-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn