Please wait a minute...
 
2222材料工程  2017, Vol. 45 Issue (1): 52-57    DOI: 10.11868/j.issn.1001-4381.2014.001571
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
纳米TiC颗粒对Ni-TiC复合镀层组织与性能的影响
王红星1,2,*(), 毛向阳1,2, 沈彤1,2, 张月1,2
1 江苏省先进结构材料与应用技术重点实验室, 南京 211167
2 南京工程学院材料工程学院, 南京 211167
Effect of Nano-TiC Particles on Microstructure and Properties of Ni-TiC Composite Coatings
Hong-xing WANG1,2,*(), Xiang-yang MAO1,2, Tong SHEN1,2, Yue ZHANG1,2
1 Key Laboratory of Advanced Structural Materials and Application Technology of Jiangsu Province, Nanjing 211167, China
2 School of Materials Engineering, Nanjing Institute of Technology, Nanjing 211167, China
全文: PDF(964 KB)   HTML ( 10 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用双脉冲复合电镀技术,在瓦特型镀液中,制备含微-纳米TiC颗粒的Ni基复合镀层。研究镀液中纳米TiC添加量对复合镀层微观形貌、组织结构、硬度、摩擦和抗氧化性能的影响。结果表明:镀液中添加纳米TiC后,Ni-TiC复合镀层表面出现团聚、致密度降低,复合镀层的组织为Ni和TiC;随镀液中纳米TiC添加量的增加,复合镀层的显微硬度呈先增后降的趋势,而摩擦因数则先降后升;当纳米TiC颗粒添加量为6.0g/L时,复合镀层显微硬度最大,为445HV,摩擦因数较小,为0.22,磨损机制以磨料磨损为主;在900℃,100h氧化条件下抗氧化性能最佳,氧化增重为6.828mg/cm2,为微米复合镀层的0.5倍。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王红星
毛向阳
沈彤
张月
关键词 Ni-TiC复合镀层微-纳米TiC耐磨性能抗氧化性能    
Abstract

Ni based composite coatings containing micro-and nano-TiC particles were prepared by dipulse electrodepositing in Watt's nickel solution.The effect of nano-TiC content in the solution on the micro morphology, microstructure, hardness and wear resistance of composite coatings was investigated.The results show that the agglomeration of composite coatings of Ni-TiC appears and the density decreases by adding nano-TiC particles in electrolyte, the microstructure of coatings consists of Ni and TiC phase; the hardness of composite coatings firstly increases and then decreases with increasing the content of nano-TiC in bath; however, the friction coefficient of coatings firstly decreases and then increases, the maximum value of microhardness of coating with 445HV is achieved when containing 6.0g/L nano-TiC in bath, at the same time, the smaller friction coefficient of coating is about 0.22.The wear mechanism is mainly abrasive wear.Coatings under the oxidation condition at 900℃ for 100h show the best oxidation resistance which the mass gain with 6.828mg/cm2 is 1/2 of that of micro-TiC composite coating.

Key wordsNi-TiC composite coating    micro-and nano-TiC    wear resistance    oxidation resistance
收稿日期: 2014-12-31      出版日期: 2017-01-19
中图分类号:  TG174.44  
基金资助:国家自然科学基金青年科学基金项目(51301086);南京工程学院大学生科创项目(N20150217);南京工程学院大学生科创项目(201411276024Y)
通讯作者: 王红星     E-mail: wanghx@njit.edu.cn
作者简介: 王红星(1971-), 男, 博士, 副教授, 主要从事复合材料制备及性能研究, 联系地址:江苏省南京市江宁区弘景大道1号南京工程学院材料工程学院(211167), E-mail:wanghx@njit.edu.cn
引用本文:   
王红星, 毛向阳, 沈彤, 张月. 纳米TiC颗粒对Ni-TiC复合镀层组织与性能的影响[J]. 材料工程, 2017, 45(1): 52-57.
Hong-xing WANG, Xiang-yang MAO, Tong SHEN, Yue ZHANG. Effect of Nano-TiC Particles on Microstructure and Properties of Ni-TiC Composite Coatings. Journal of Materials Engineering, 2017, 45(1): 52-57.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2014.001571      或      http://jme.biam.ac.cn/CN/Y2017/V45/I1/52
Fig.1  镀液中添加不同纳米TiC含量时Ni-TiC复合镀层的SEM形貌
(a)0 g/L;(b)2.0 g/L;(c)6.0 g/L;(d)8.0 g/L;(e)10.0 g/L
Fig.2  不同纳米TiC添加量时Ni-TiC复合镀层的XRD图谱
Fig.3  镀液中纳米TiC添加量与复合镀层显微硬度的关系
Fig.4  摩擦因数随时间变化的曲线
Fig.5  不同纳米TiC添加量时复合镀层磨痕SEM形貌
(a)0 g/L;(b)2.0 g/L;(c)6.0 g/L;(d)8.0 g/L;(e)10.0 g/L
Fig.6  Ni-TiC复合镀层在900℃, 100h氧化动力学曲线
Fig.7  不同纳米TiC添加量时复合镀层氧化SEM形貌
(a)0 g/L;(b)2.0 g/L;(c)6.0 g/L;(d)8.0 g/L;(e)10.0 g/L
1 SOLDAN J , MUSIL J . Structure and mechanical properties of DC magnetron sputtered TiC/Cu films[J]. Vacuum, 2006, 81 (4): 531- 538.
doi: 10.1016/j.vacuum.2006.07.013
2 AKHTAR F , ASKARI S J , SHAH J A , et al. Processing microstructure and mechanical properties of TiC-465 stainless steel/465 stainless steel layer composites[J]. Journal of Alloys and Compounds, 2007, 439 (1-2): 287- 293.
doi: 10.1016/j.jallcom.2006.08.073
3 闫世兴, 董世运, 徐滨士, 等. 预热温度对灰铸铁表面激光熔覆镍基涂层组织与性能的影响[J]. 材料工程, 2015, 43 (1): 30- 36.
3 YAN S X , DONG S Y , XU B S , et al. Effect of preheating temperature on microstructure and property of laser clad Ni-based alloy coating on gray cast iron substrate[J]. Journal of Materials Engineering, 2015, 43 (1): 30- 36.
4 WILSON J M , SHIN Y C . Microstructure and wear properties of laser-deposited functionally graded Inconel 690 reinforced with TiC[J]. Surface and Coatings Technology, 2012, 207, 517- 522.
doi: 10.1016/j.surfcoat.2012.07.058
5 侯丹辉, 王耀民, 刘喜明, 等. 激光熔覆原位合成TiC的Ni/TiC复合层显微组织与性能研究[J]. 长春工业大学学报(自然科学版), 2008, 29 (2): 121- 124.
5 HOU D H , WANG Y M , LIU X M , et al. Microstructure and properties of Ni/TiC composite coating prepared with laser clad TiC[J]. Journal of Changchun University of Technology (Natural Science Edition), 2008, 29 (2): 121- 124.
6 渠通洋, 赵海云, 欧阳洁. 激光熔覆TiC/Ni-Al基复合涂层的高温稳定性研究[J]. 稀有金属与硬质合金, 2008, 36 (1): 11- 15.
6 QU T Y , ZHAO H Y , OUYANG J . Study of high-temperature stability of a TiC/Ni-Al composite coating prepared by laser deposition[J]. Rare Metals and Cemented Carbides, 2008, 36 (1): 11- 15.
7 YUAN X Y , LIU G H , JIN H B , et al. In situ synthesis of TiC reinforced metal matrix composite (MMC) coating by self propagating high temperature synthesis (SHS)[J]. Journal of Alloys and Compounds, 2011, 509 (30): L301- L303.
doi: 10.1016/j.jallcom.2011.04.150
8 SHANAGHI A , CHU P K , ALI REZA S R , et al. Structure and corrosion resistance of Ti/TiC coatings fabricated by plasma immersion ion implantation and deposition on nickel-titanium[J]. Surface and Coatings Technology, 2013, 229, 151- 155.
doi: 10.1016/j.surfcoat.2012.07.063
9 吴玉萍, 林萍华, 曹明, 等. Ni60+TiC等离子熔覆层的汽蚀特征[J]. 材料热处理学报, 2007, 28 (5): 128- 133.
9 WU Y P , LIN P H , CAO M , et al. Cavitation erosion characteristics of Ni60+TiC plasma cladding layer[J]. Transactions of Materials and Heat Treatment, 2007, 28 (5): 128- 133.
10 刘元富, 刘秀波, 张伟, 等. 等离子熔敷TiC/γ-(Fe, Ni)复合涂层组织与耐磨性[J]. 材料热处理学报, 2012, 33 (3): 119- 123.
10 LIU Y F , LIU X B , ZHANG W , et al. Microstructure and wear resistance of plasma clad TiC/γ-(Fe, Ni) composite coating[J]. Transactions of Materials and Heat Treatment, 2012, 33 (3): 119- 123.
11 QI X , EIGENG N , AUST E , et al. Two-body abrasive wear of nano-and microcrystalline TiC-Ni-based thermal spray coatings[J]. Surface and Coatings Technology, 2006, 200 (16-17): 5037- 5047.
doi: 10.1016/j.surfcoat.2005.05.007
12 KARBASI M , YAZDIAN N , VAHIDIAN A . Development of electro-co-deposited Ni-TiC nano-particle reinforced nanocomposite coatings[J]. Surface and Coatings Technology, 2012, 207, 587- 593.
doi: 10.1016/j.surfcoat.2012.07.083
13 AFROUKHTEH S , DEHGHANIAN C , EMAMY M . Preparation of the Ni-P composite coating co-deposited by nano TiC particles and evaluation of its corrosion property[J]. Applied Surface Science, 2012, 258 (7): 2597- 2601.
doi: 10.1016/j.apsusc.2011.10.101
14 SAHAR A , CHANGIZ D , MASSOOD E . Corrosion behavior of Ni-P/nano-TiC composite coating prepared in electroless baths containing different types of surfactant[J]. Progress in Natural Science:Materials International, 2012, 22 (5): 480- 487.
doi: 10.1016/j.pnsc.2012.10.005
15 马洪涛, 戈晓岚. SiC颗粒尺寸对镁合金化学镀Ni-P-SiC层摩擦学性能的影响[J]. 材料保护, 2013, 46 (4): 13- 15.
15 MA H T , GE X L . Effect of silicon carbide particles size on wear resistance of electroless nickel-phosphorous-silicon carbide composite coatings of magnesium alloy substrate[J]. Materials Protection, 2013, 46 (4): 13- 15.
16 SRIVASTAVA M , GRIPS V K W , JAIN A , et al. Influence of SiC particle size on the structure and tribological properties of Ni-Co composites[J]. Surface and Coatings Technology, 2007, 202 (2): 310- 318.
doi: 10.1016/j.surfcoat.2007.05.078
[1] 姜萱, 陈林, 郝轩弘, 王悦怡, 张晓伟, 刘洪喜. 难熔高熵合金制备及性能研究进展[J]. 材料工程, 2022, 50(3): 33-42.
[2] 覃鑫, 祁文军, 左小刚. TC4钛合金表面激光熔覆NiCrCoAlY-Cr3C2复合涂层的摩擦和高温抗氧化性能[J]. 材料工程, 2021, 49(12): 107-114.
[3] 赵龙志, 刘武, 刘德佳, 赵明娟, 张坚. SiC含量对激光熔覆SiC/Ni60A复合涂层显微组织和耐磨性能的影响[J]. 材料工程, 2017, 45(3): 88-94.
[4] 王红星, 谈淑咏, 柳秉毅, 沈彤. 纳米SiC浓度对Ni/纳米MoS2基复合镀层结构和耐磨性能的影响[J]. 材料工程, 2015, 43(10): 60-65.
[5] 高俊国, 陆峰, 王长亮, 郭孟秋, 崔永静. 氧燃充枪比对爆炸喷涂CoCrAlYTa涂层抗氧化性能的影响[J]. 材料工程, 2013, 0(4): 28-33.
[6] 刘慧敏, 杨树青, 许萍, 李进福. 原位Al2O3P/7075复合材料微观组织与磨损行为[J]. 材料工程, 2012, 0(11): 1-5.
[7] 卢国锋, 乔生儒, 弓满锋, 侯军涛, 焦更生. C/Si-C-N复合材料的制备及其氧化行为研究[J]. 材料工程, 2010, 0(3): 13-17.
[8] 许乔瑜, 何伟娇. 非晶态Ni-P-ZrO2复合镀层的耐磨性能[J]. 材料工程, 2010, 0(12): 61-65.
[9] 林新志, 马旭梁. B添加对TiC/Ti6Al4V复合材料组织和耐磨性能的影响[J]. 材料工程, 2009, 0(8): 6-9.
[10] 李友生, 邓建新, 张辉, 李剑峰. 硬质合金刀具材料的抗氧化性能研究[J]. 材料工程, 2009, 0(2): 34-37,42.
[11] 齐鑫哲, 魏琪, 栗卓新, 刘海霞. 电弧喷涂制备铝基涂层的组织与性能研究[J]. 材料工程, 2005, 0(1): 20-24,28.
[12] 黄小萧, 温广武, 程显明. Al4SiC4陶瓷的高温抗氧化性能和高温力学性能的研究[J]. 材料工程, 2004, 0(12): 32-35.
[13] 赵玉珍, 王维斌, 史耀武, 沈莲. 高碳高合金钢的激光表面熔凝处理的耐磨性研究[J]. 材料工程, 2003, 0(2): 37-40.
[14] 肖程波, 韩雅芳. 硅对含钇Ni3Al基合金IC6微观组织和高温抗氧化性能的影响[J]. 材料工程, 1998, 0(8): 11-13.
[15] 肖程波, 韩雅芳. 钇对Ni3Al基合金IC6微观组织和高温抗氧化性能的影响[J]. 材料工程, 1998, 0(6): 23-25,49.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn