Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (1): 52-57    DOI: 10.11868/j.issn.1001-4381.2014.001571
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
纳米TiC颗粒对Ni-TiC复合镀层组织与性能的影响
王红星1,2, 毛向阳1,2, 沈彤1,2, 张月1,2
1. 江苏省先进结构材料与应用技术重点实验室, 南京 211167;
2. 南京工程学院材料工程学院, 南京 211167
Effect of Nano-TiC Particles on Microstructure and Properties of Ni-TiC Composite Coatings
WANG Hong-xing1,2, MAO Xiang-yang1,2, SHEN Tong1,2, ZHANG Yue1,2
1. Key Laboratory of Advanced Structural Materials and Application Technology of Jiangsu Province, Nanjing 211167, China;
2. School of Materials Engineering, Nanjing Institute of Technology, Nanjing 211167, China
全文: PDF(964 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用双脉冲复合电镀技术,在瓦特型镀液中,制备含微-纳米TiC颗粒的Ni基复合镀层。研究镀液中纳米TiC添加量对复合镀层微观形貌、组织结构、硬度、摩擦和抗氧化性能的影响。结果表明:镀液中添加纳米TiC后,Ni-TiC复合镀层表面出现团聚、致密度降低,复合镀层的组织为Ni和TiC;随镀液中纳米TiC添加量的增加,复合镀层的显微硬度呈先增后降的趋势,而摩擦因数则先降后升;当纳米TiC颗粒添加量为6.0g/L时,复合镀层显微硬度最大,为445HV,摩擦因数较小,为0.22,磨损机制以磨料磨损为主;在900℃,100h氧化条件下抗氧化性能最佳,氧化增重为6.828mg/cm2,为微米复合镀层的0.5倍。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王红星
毛向阳
沈彤
张月
关键词 Ni-TiC复合镀层微-纳米TiC耐磨性能抗氧化性能    
Abstract:Ni based composite coatings containing micro-and nano-TiC particles were prepared by dipulse electrodepositing in Watt's nickel solution.The effect of nano-TiC content in the solution on the micro morphology,microstructure,hardness and wear resistance of composite coatings was investigated.The results show that the agglomeration of composite coatings of Ni-TiC appears and the density decreases by adding nano-TiC particles in electrolyte,the microstructure of coatings consists of Ni and TiC phase;the hardness of composite coatings firstly increases and then decreases with increasing the content of nano-TiC in bath;however,the friction coefficient of coatings firstly decreases and then increases,the maximum value of microhardness of coating with 445HV is achieved when containing 6.0g/L nano-TiC in bath,at the same time,the smaller friction coefficient of coating is about 0.22.The wear mechanism is mainly abrasive wear.Coatings under the oxidation condition at 900℃ for 100h show the best oxidation resistance which the mass gain with 6.828mg/cm2 is 1/2 of that of micro-TiC composite coating.
Key wordsNi-TiC composite coating    micro-and nano-TiC    wear resistance    oxidation resistance
收稿日期: 2014-12-31      出版日期: 2017-01-19
中图分类号:  TG174.44  
通讯作者: 王红星(1971-),男,博士,副教授,主要从事复合材料制备及性能研究,联系地址:江苏省南京市江宁区弘景大道1号南京工程学院材料工程学院(211167),E-mail:wanghx@njit.edu.cn     E-mail: wanghx@njit.edu.cn
引用本文:   
王红星, 毛向阳, 沈彤, 张月. 纳米TiC颗粒对Ni-TiC复合镀层组织与性能的影响[J]. 材料工程, 2017, 45(1): 52-57.
WANG Hong-xing, MAO Xiang-yang, SHEN Tong, ZHANG Yue. Effect of Nano-TiC Particles on Microstructure and Properties of Ni-TiC Composite Coatings. Journal of Materials Engineering, 2017, 45(1): 52-57.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2014.001571      或      http://jme.biam.ac.cn/CN/Y2017/V45/I1/52
[1] SOLDAN J, MUSIL J. Structure and mechanical properties of DC magnetron sputtered TiC/Cu films[J]. Vacuum,2006,81(4):531-538.
[2] AKHTAR F, ASKARI S J, SHAH J A, et al. Processing microstructure and mechanical properties of TiC-465 stainless steel/465 stainless steel layer composites[J]. Journal of Alloys and Compounds, 2007,439(1-2):287-293.
[3] 闫世兴, 董世运, 徐滨士, 等. 预热温度对灰铸铁表面激光熔覆镍基涂层组织与性能的影响[J]. 材料工程, 2015, 43(1):30-36. YAN S X,DONG S Y, XU B S,et al. Effect of preheating temperature on microstructure and property of laser clad Ni-based alloy coating on gray cast iron substrate[J].Journal of Materials Engineering,2015, 43(1):30-36.
[4] WILSON J M, SHIN Y C.Microstructure and wear properties of laser-deposited functionally graded Inconel 690 reinforced with TiC[J]. Surface and Coatings Technology,2012, 207:517-522.
[5] 侯丹辉,王耀民,刘喜明,等. 激光熔覆原位合成TiC的Ni/TiC复合层显微组织与性能研究[J].长春工业大学学报(自然科学版),2008,29(2):121-124. HOU D H,WANG Y M,LIU X M, et al. Microstructure and properties of Ni/TiC composite coating prepared with laser clad TiC[J]. Journal of Changchun University of Technology(Natural Science Edition), 2008,29(2):121-124.
[6] 渠通洋,赵海云,欧阳洁. 激光熔覆TiC/Ni-Al基复合涂层的高温稳定性研究[J].稀有金属与硬质合金,2008,36(1):11-15. QU T Y, ZHAO H Y, OUYANG J.Study of high-temperature stability of a TiC/Ni-Al composite coating prepared by laser deposition[J]. Rare Metals and Cemented Carbides,2008,36(1):11-15.
[7] YUAN X Y, LIU G H, JIN H B, et al.In situ synthesis of TiC reinforced metal matrix composite (MMC) coating by self propagating high temperature synthesis (SHS)[J]. Journal of Alloys and Compounds,2011, 509(30):L301-L303.
[8] SHANAGHI A, CHU P K, ALI REZA S R, et al. Structure and corrosion resistance of Ti/TiC coatings fabricated by plasma immersion ion implantation and deposition on nickel-titanium[J].Surface and Coatings Technology, 2013, 229:151-155.
[9] 吴玉萍,林萍华,曹明,等. Ni60+TiC等离子熔覆层的汽蚀特征[J].材料热处理学报,2007,28(5):128-133. WU Y P, LIN P H,CAO M, et al. Cavitation erosion characteristics of Ni60+TiC plasma cladding layer[J]. Transactions of Materials and Heat Treatment, 2007,28(5):128-133.
[10] 刘元富,刘秀波,张伟,等. 等离子熔敷TiC/γ-(Fe,Ni)复合涂层组织与耐磨性[J].材料热处理学报,2012,33(3):119-123. LIU Y F,LIU X B,ZHANG W,et al.Microstructure and wear resistance of plasma clad TiC/γ-(Fe,Ni) composite coating[J]. Transactions of Materials and Heat Treatment, 2012,33(3):119-123.
[11] QI X, EIGENG N, AUST E, et al.Two-body abrasive wear of nano- and microcrystalline TiC-Ni-based thermal spray coatings[J]. Surface and Coatings Technology,2006, 200(16-17):5037-5047.
[12] KARBASI M, YAZDIAN N, VAHIDIAN A. Development of electro-co-deposited Ni-TiC nano-particle reinforced nanocomposite coatings[J]. Surface and Coatings Technology,2012, 207:587-593.
[13] AFROUKHTEH S, DEHGHANIAN C, EMAMY M.Preparation of the Ni-P composite coating co-deposited by nano TiC particles and evaluation of its corrosion property[J]. Applied Surface Science,2012, 258(7):2597-2601.
[14] SAHAR A,CHANGIZ D, MASSOOD E. Corrosion behavior of Ni-P/nano-TiC composite coating prepared in electroless baths containing different types of surfactant[J]. Progress in Natural Science:Materials International, 2012, 22(5):480-487.
[15] 马洪涛,戈晓岚. SiC颗粒尺寸对镁合金化学镀Ni-P-SiC层摩擦学性能的影响[J].材料保护,2013,46(4):13-15. MA H T, GE X L.Effect of silicon carbide particles size on wear resistance of electroless nickel-phosphorous-silicon carbide composite coatings of magnesium alloy substrate[J]. Materials Protection,2013,46(4):13-15.
[16] SRIVASTAVA M,GRIPS V K W, JAIN A, et al. Influence of SiC particle size on the structure and tribological properties of Ni-Co composites[J].Surface and Coatings Technology,2007, 202(2):310-318.
[1] 王红星, 谈淑咏, 柳秉毅, 沈彤. 纳米SiC浓度对Ni/纳米MoS2基复合镀层结构和耐磨性能的影响[J]. 材料工程, 2015, 43(10): 60-65.
[2] 高俊国, 陆峰, 王长亮, 郭孟秋, 崔永静. 氧燃充枪比对爆炸喷涂CoCrAlYTa涂层抗氧化性能的影响[J]. 材料工程, 2013, 0(4): 28-33.
[3] 刘慧敏, 杨树青, 许萍, 李进福. 原位Al2O3P/7075复合材料微观组织与磨损行为[J]. 材料工程, 2012, 0(11): 1-5.
[4] 卢国锋, 乔生儒, 弓满锋, 侯军涛, 焦更生. C/Si-C-N复合材料的制备及其氧化行为研究[J]. 材料工程, 2010, 0(3): 13-17.
[5] 许乔瑜, 何伟娇. 非晶态Ni-P-ZrO2复合镀层的耐磨性能[J]. 材料工程, 2010, 0(12): 61-65.
[6] 林新志, 马旭梁. B添加对TiC/Ti6Al4V复合材料组织和耐磨性能的影响[J]. 材料工程, 2009, 0(8): 6-9.
[7] 李友生, 邓建新, 张辉, 李剑峰. 硬质合金刀具材料的抗氧化性能研究[J]. 材料工程, 2009, 0(2): 34-37,42.
[8] 齐鑫哲, 魏琪, 栗卓新, 刘海霞. 电弧喷涂制备铝基涂层的组织与性能研究[J]. 材料工程, 2005, 0(1): 20-24,28.
[9] 黄小萧, 温广武, 程显明. Al4SiC4陶瓷的高温抗氧化性能和高温力学性能的研究[J]. 材料工程, 2004, 0(12): 32-35.
[10] 赵玉珍, 王维斌, 史耀武, 沈莲. 高碳高合金钢的激光表面熔凝处理的耐磨性研究[J]. 材料工程, 2003, 0(2): 37-40.
[11] 肖程波, 韩雅芳. 硅对含钇Ni3Al基合金IC6微观组织和高温抗氧化性能的影响[J]. 材料工程, 1998, 0(8): 11-13.
[12] 肖程波, 韩雅芳. 钇对Ni3Al基合金IC6微观组织和高温抗氧化性能的影响[J]. 材料工程, 1998, 0(6): 23-25,49.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn