Please wait a minute...
 
2222材料工程  2017, Vol. 45 Issue (1): 1-6    DOI: 10.11868/j.issn.1001-4381.2015.000125
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
自蔓延高温合成/单向加压法制备ZrC陶瓷研究
程勇1, 苏勋家1,*(), 侯根良1, 史子良1, 钟长荣1, 邢亚坤2
1 火箭军工程大学, 西安 710025
2 重庆通信学院, 重庆 400035
ZrC Ceramics Prepared by Self-propagating High-temperature Synthesis/Single Action Pressing
Yong CHENG1, Xun-jia SU1,*(), Gen-liang HOU1, Zi-liang SHI1, Chang-rong ZHONG1, Ya-kun XING2
1 Rocket Force University of Engineering, Xi'an 710025, China
2 Chong Qing Communication Constitution, Chongqing 400035, China
全文: PDF(973 KB)   HTML ( 12 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用自蔓延高温合成/单向加压法(SHS/SAP)在机械轴压下制备ZrC陶瓷。研究压力大小对ZrC陶瓷显微结构与致密度的影响以及位移、负荷曲线的变化规律与SHS反应过程之间的关系。利用XRD与SEM研究产物的物相组成和显微结构,采用排液法测定产物的密度,通过万能试验机平台记录位移、负荷曲线。结果表明:产物基体主要由ZrC相组成。压力的增大加速了排气过程。产物内部的孔洞及ZrC晶粒的尺寸呈变小趋势,致密度呈增大的趋势,而压力为80 MPa后致密度增大趋势变化不大,由于在SHS反应结束后的最高温度时压力下降较剧烈,在压力为120 MPa时产物的致密度也仅为65.7%。位移、负荷曲线反映了SHS反应结束的时间点及之后产物所处的塑性时间段,这为引入自蔓延高温合成/准热等静压法进一步提高陶瓷致密度的工艺参数提供了依据。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
程勇
苏勋家
侯根良
史子良
钟长荣
邢亚坤
关键词 SHS/SAPZrC陶瓷压力    
Abstract

ZrC ceramics were prepared by mechanical axial compression of self-propagating high-temperature synthesis/single action pressing (SHS/SAP).The effects of pressure on microstructure and densification of the products, as well as the relationship between displacement/variation of the load curve and SHS reaction, were studied.The structure and properties of the products were investigated by XRD and SEM.In addition, the density was measured by the drain away liquid method.Meanwhile, universal testing machine was used to record the displacement and load curve alternations.The results indicate that products are mainly composed of ZrC phase, the process of exhaust are accelerated as the increasing of pressure as well, leading to the smaller size of porosity and crystal particles.Density manifested as an increasing pattern by the elevated pressure with no longer change at 80 MPa.Due to the strong attenuation of pressure at the peak of temperature, the density of the production is only 65.7% in 120 MPa.The end point of the SHS reaction and the plastic time of the products can be monitored by displacement and load curve.The results provide evidence for the application of self-propagating high-temperature synthesis/pseudo-hot isostatic pressing to further improve the density of ceramics.

Key wordsSHS/SAP    ZrC    ceramic    pressure
收稿日期: 2015-01-26      出版日期: 2017-01-19
中图分类号:  TB35  
基金资助:陕西省科技创新团队资助项目(2014KCT-03)
通讯作者: 苏勋家     E-mail: suxunjia@163.com
作者简介: 苏勋家(1965-), 男, 教授, 博士生导师, 研究方向:兵器科学与技术, 联系地址:陕西省西安市灞桥区洪庆镇同心路2号火箭军工程大学501教研室(710025), E-mail:suxunjia@163.com
引用本文:   
程勇, 苏勋家, 侯根良, 史子良, 钟长荣, 邢亚坤. 自蔓延高温合成/单向加压法制备ZrC陶瓷研究[J]. 材料工程, 2017, 45(1): 1-6.
Yong CHENG, Xun-jia SU, Gen-liang HOU, Zi-liang SHI, Chang-rong ZHONG, Ya-kun XING. ZrC Ceramics Prepared by Self-propagating High-temperature Synthesis/Single Action Pressing. Journal of Materials Engineering, 2017, 45(1): 1-6.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.000125      或      http://jme.biam.ac.cn/CN/Y2017/V45/I1/1
Fig.1  SHS/SAP装置示意图
Fig.2  试样的XRD图
Fig.3  不同压力下制备的ZrC试样断面的SEM图
(a), (b)0 MPa;(c), (d)40 MPa;(e), (f)80 MPa
Fig.4  不同压力下试样的致密度曲线
Fig.5  80 MPa压力下SHS位移曲线(a)和负荷曲线(b)
Fig.6  燃烧速率随压力变化关系
1 ZHANG X , HILMAS G E , FAHRENHOLTS W G , et al. Hot pressing of tantalum carbide with and without sintering additives[J]. J Am Ceram Soc, 2007, 90 (2): 393- 401.
doi: 10.1111/jace.2007.90.issue-2
2 LIU J X , KAN Y M , ZHANG G J . Synthesis of ultra-fine hafnium carbide powder and its pressureless sintering[J]. J Am Ceram Soc, 2010, 93 (4): 980- 986.
doi: 10.1111/jace.2010.93.issue-4
3 李秀倩, 焦健, 邱海鹏, 等. ZrC/SiC多组元改性C/C复合材料的制备及性能研究[J]. 航空材料学报, 2014, 34 (3): 69- 73.
3 LI X Q , JIAO J , QIU H P , et al. Preparation and performance of ZrC/SiC multi-components modified C/C composites[J]. Journal of Aeronautical Materials, 2014, 34 (3): 69- 73.
4 MA B X , HAN W B . Thermal shock resistance of ZrC matrix ceramics[J]. J Refract Met Hard Mat, 2010, 28 (2): 187- 190.
doi: 10.1016/j.ijrmhm.2009.09.001
5 张响, 陈招科, 熊翔. C/C-SiC复合材料表面ZrB2基陶瓷涂层的制备及高温烧结机理[J]. 材料工程, 2015, 43 (3): 1- 6.
5 ZHANG X , CHEN Z K , XIONG X . Preparation and high-temperature sintering mechanism of ZrB2 ceramic composite coatings for C/C-SiC composites[J]. Journal of Materials Engineering, 2015, 43 (3): 1- 6.
6 ZHAO L Y , JIA D C , WANG Y J , et al. ZrC-ZrB2 matrix composites with enhanced toughness prepared by reactive hot pressing[J]. Set Mater, 2010, 63 (8): 887- 890.
7 WANG X G , GUO W M , KAN Y M , et al. Densification behavior and properties of hot-pressed ZrC ceramics with Zr and graphite additives[J]. J Eur Ceram Soc, 2011, 31 (6): 1103- 1111.
doi: 10.1016/j.jeurceramsoc.2011.01.005
8 NOBUHIRO S . Simultaneous synthesis and forming of Ti-B system by self-propagating reaction[J]. The Ceramic Society of Japan, 1987, 95 (2): 243- 247.
9 YANAGISAWA N, SATA N, SANADA N.Fabrication of TiB2-Cu functionally gradient material by SHS process[C]//YAMANOUCHI M.Proc 1st US-Japanese Workshop on Combustion Synthesis.Tokyo:National Research Institute for Metals, 1990.
10 ZAVITSANOS P.The use of self-propagating high-temperature synthesis of high-density titanium diboride[C]//MUNIR Z A.Combustion and Plasma Synthesis of High-temperature Materials.New York:VCH Publisher, 1990.
11 殷声. 燃烧合成[M]. 北京: 冶金工业出版社, 1999.
11 YIN S . Combustion Synthesis[M]. Beijing: Metallurgical Industry Press, 1999.
12 宋谋胜.燃烧合成TiC、ZrC晶体的形成过程与生长动力学研究[D].上海:上海交通大学, 2009.
12 SONG M S.Investigation of the formation process and growth kinetics of combustion synthesized TiC and ZrC crystals[D].Shanghai:Shanghai Jiao Tong University, 2009.
13 MERZHANOV A G.Self-propagating high-temperature synthesis:twenty years of search and findings[C]//MUNIR Z A.Combustion and Plasma Synthesis of High-temperature Materials.New York:VCH Publisher, 1990.
14 傅正义, 袁润章, MUNIRZ A. 原料粒度及组成对TiB2-xAl复合体系的SHS合成过程影响[J]. 复合材料学报, 1994, 11 (2): 91.
14 FU Z Y , YUAN R Z , MUNIR Z A . Effect of composition and raw materials particle size on SHS of TiB2-xAl composite system[J]. Acta Materiae Compositae Sinica, 1994, 11 (2): 91.
15 傅正义, 王为民, 王皓. TiB2系金属陶瓷的SHS/QP制备[J]. 硅酸盐学报, 1996, 24 (6): 657- 658.
15 FU Z Y , WANG W M , WANG H . TiB2-xFe cermet prepared by SHS/QP[J]. Journal of the Chinese Ceramic Society, 1996, 24 (6): 657- 658.
16 李翀.Ti3AlC2陶瓷材料的SHS/PHIP制备工艺及其性能与应用研究[D].哈尔滨:哈尔滨工业大学, 2007.
16 LI C.Study on SHS/PHIP prepared technology and the properties and applications of Ti3A1C2 ceramics material[D].Harbin:Harbin Institute of Technology, 2007.
17 朱春城, 林红, 李翀, 等. TiC-TiB2/Cu金属陶瓷燃烧合成及工艺参数的正交优化[J]. 黑龙江大学自然科学学报, 2007, 24 (3): 331- 335.
17 ZHU C C , LIN H , LI C , et al. Orthogonal optimization of process parameter during TiC-TiB2/Cu cermets combustion synthesis[J]. Journal of Natural Science of Heilongjiang University, 2007, 24 (3): 331- 335.
18 汪建利, 张光胜, 朱云广, 等. 燃烧合成Cf/TiC-TiB2陶瓷基复合材料的致密化因素探讨[J]. 粉末冶金技术, 2008, 26 (1): 33- 36.
18 WANG J L , ZHANG G S , ZHU Y G , et al. Densification factors of Cf/TiC-TiB2 ceramic composites by combustion synthesis[J]. Powder Metallurgy Technology, 2008, 26 (1): 33- 36.
[1] 杨建国, 沈伟健, 李华鑫, 贺艳明, 闾川阳, 郑文健, 马英鹤, 魏连峰. 氮掺杂导电碳化硅陶瓷研究进展[J]. 材料工程, 2022, 50(9): 18-31.
[2] 牛方勇, 于学鑫, 赵紫渊, 赵大可, 黄云飞, 马广义, 吴东江. 熔体自生陶瓷激光直接能量沉积增材制造研究进展[J]. 材料工程, 2022, 50(7): 1-17.
[3] 刘岩松, 李文博, 刘永胜, 曾庆丰. 3D打印陶瓷铸型研究与应用进展[J]. 材料工程, 2022, 50(7): 18-29.
[4] 焦晨, 梁绘昕, 叶昀, 张寒旭, 何志静, 杨友文, 沈理达, 侯锋. 光固化生物陶瓷功能化研究进展[J]. 材料工程, 2022, 50(7): 30-39.
[5] 李文利, 周宏志, 刘卫卫, 于海宁, 王晶, 巩磊, 邢占文. 光固化3D打印陶瓷浆料及流变性研究进展[J]. 材料工程, 2022, 50(7): 40-50.
[6] 王权威, 王程冬, 鲁中良, 苗恺, 艾子超, 李涤尘. 面向单晶涡轮叶片的氧化硅基陶瓷型芯快速成形性能[J]. 材料工程, 2022, 50(7): 51-58.
[7] 刘庆帅, 刘秀波, 刘一帆, 张林, 孟元, 刘怀菲. 陶瓷基高温自润滑复合涂层的制备及摩擦学性能研究进展[J]. 材料工程, 2022, 50(6): 61-74.
[8] 雷磊, 伍雨驰, 程子晋, 刘莉, 郑靖. 牙科陶瓷材料的摩擦学性能研究进展[J]. 材料工程, 2022, 50(2): 1-11.
[9] 罗萌, 向阳, 彭志航, 曹峰. 纤维多孔陶瓷的研究进展[J]. 材料工程, 2022, 50(11): 63-72.
[10] 李国青, 杨丽霞, 余敏. 生物态碳-陶瓷基复合材料制备方法的研究现状[J]. 材料工程, 2022, 50(10): 1-14.
[11] 张路, 袁芳, 王文清, 董星杰, 何汝杰. 面向一体化热防护的陶瓷基复合材料轻量化结构研究进展与挑战[J]. 材料工程, 2022, 50(10): 15-28.
[12] 姜卓钰, 束小文, 吕晓旭, 高晔, 周怡然, 董禹飞, 焦健. SiC晶须增强SiCf/SiC复合材料的力学性能[J]. 材料工程, 2021, 49(8): 89-96.
[13] 解齐颖, 张祎, 朱阳, 崔红. 超高温陶瓷改性碳/碳复合材料[J]. 材料工程, 2021, 49(7): 46-55.
[14] 焦春荣, 焦健. 料浆对熔渗工艺制备碳纤维织物增强碳化硅复合材料的影响[J]. 材料工程, 2021, 49(7): 78-84.
[15] 邢宇轩, 郭英奎, 陈磊, 赵壮志, 王玉金. 气压浸渗法制备ZrC-W-Cu复合材料的显微组织与力学性能[J]. 材料工程, 2021, 49(7): 124-132.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn