Please wait a minute...
 
2222材料工程  2017, Vol. 45 Issue (1): 111-119    DOI: 10.11868/j.issn.1001-4381.2015.000449
  综述 本期目录 | 过刊浏览 | 高级检索 |
亚稳β型钛合金中的{332}<113>变形孪晶
陈斌, 孙威(), 赵颉, 胡常青
北京工业大学 固体微结构与性能研究所, 北京 100124
{332}〈113〉 Deformation Twinning in Metastable β-type Titanium Alloys
Bin CHEN, Wei SUN(), Jie ZHAO, Chang-qing HU
Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124, China
全文: PDF(1163 KB)   HTML ( 11 )  
输出: BibTeX | EndNote (RIS)      
摘要 

{332} < 113>变形孪晶是亚稳β型钛合金变形过程中的一种独特变形机制。该类型孪晶具有特殊性质并且对亚稳β型钛合金力学性能具有显著影响。本文总结了{332} < 113>变形孪晶的研究状况和特性,重点介绍了{332} < 113>变形孪晶形成的几种代表性模型。通过分别对这些模型的假设条件以及需要进一步解释和验证的科学问题进行分析,旨在为理解和揭示{332} < 113>变形孪晶的变形机制提供有用的参考信息。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈斌
孙威
赵颉
胡常青
关键词 亚稳β型钛合金{332}<113>变形孪晶变形机制    
Abstract

{332} < 113> deformation twinning is a unique deformation mode which can have some special features and a strong influence on the mechanical properties for metastable β-type titanium alloys.{332} < 113> deformation twinning has already got more and more attention.The research situation and observed characteristics for the {332} < 113> deformation twinning are summarized in this paper.Some typical models for the {332} < 113> twinning are reviewed, and their assumptions and remaining problems are presented so as to provide useful information for understanding and revealing the deformation mechanism of {332} < 113> deformation twinning.

Key wordsmetastable β-type titanium alloy    {332}<113>deformation twinning    deformation mechanism
收稿日期: 2015-09-08      出版日期: 2022-12-03
中图分类号:  TG146  
基金资助:国家自然科学基金资助项目(51171004);北京工业大学研究生科技基金资助项目(ykj-2014-10574)
通讯作者: 孙威     E-mail: weisun@bjut.edu.cn
作者简介: 孙威(1962-), 男, 教授, 博士, 从事周期与准周期复杂合金相中原子团及新型缺陷结构解析、新型生体医用Ti基合金设计、结构表征与相关性能的研究工作, 联系地址:北京市朝阳区平乐园100号北京工业大学固体微结构与性能研究所(100124), E-mail:weisun@bjut.edu.cn
引用本文:   
陈斌, 孙威, 赵颉, 胡常青. 亚稳β型钛合金中的{332}<113>变形孪晶[J]. 材料工程, 2017, 45(1): 111-119.
Bin CHEN, Wei SUN, Jie ZHAO, Chang-qing HU. {332}〈113〉 Deformation Twinning in Metastable β-type Titanium Alloys. Journal of Materials Engineering, 2017, 45(1): 111-119.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.000449      或      http://jme.biam.ac.cn/CN/Y2017/V45/I1/111
Fig.1  {332}〈113〉变形孪晶形成机制模型(a)和形成后的孪晶及其界面附近结构(b)[43]
Fig.2  {332}〈113〉变形孪晶的形成机制示意图[16] (a) Richman模型; (b)松弛模型; (c), (d)用多层法模拟的相应高分辨图像
Fig.3  {332}〈113〉变形孪晶形成的β⇌α″马氏体机制示意图[17] (a)β→α″马氏体相转变;(b)α″→β逆转变
Fig.4  {332}〈113〉变形孪晶的形成机制示意图[24] (a) Richman模型;(b)β⇌α″马氏体机制模型
Fig.5  Kawabata{332}孪晶位错模型[35] (a)孪晶位错a/22[11${\rm{\bar 3}}$]在(332)面上的滑移;(b)原子的重组运动;(c)孪晶位错a/22[11${\rm{\bar 3}}$]在(332)面上的再次滑移; (d)基于该机制形成的{332}〈11${\rm{\bar 3}}$〉变形孪晶基本单元的示意图
Fig.6  a/22[11${\rm{\bar 3}}$] “zonal dislocation”的运动同时伴随有原子的重组(a),a/22[11${\rm{\bar 3}}$] “zonal dislocation”滑移形成的孪晶结构(b)以及a/22[11${\rm{\bar 3}}$]分位错在{332}面的滑移形成层错(c)[49]
Fig.7  BCC晶格结构(a)和晶格调制结构(b)以及可以被看成四方结构的晶格调制结构示意图(c), (d)[50]
1 NIINOMI M . Mechanical biocompatibilities of titanium alloys for biomedical applications[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2008, 1 (1): 30- 42.
doi: 10.1016/j.jmbbm.2007.07.001
2 GEETHA M , SINGH A K , ASOKAMANI R , et al. Ti based biomaterials, the ultimate choice for orthopaedic implants-a review[J]. Progress in Materials Science, 2009, 54 (3): 397- 425.
doi: 10.1016/j.pmatsci.2008.06.004
3 李红梅, 雷霆, 方树铭, 等. 生物医用钛合金的研究进展[J]. 金属功能材料, 2011, 18 (2): 70- 73.
3 LI H M , LEI T , FANG S M , et al. Research progress of biomedical titanium alloys[J]. Metallic Functional Materials, 2011, 18 (2): 70- 73.
4 BIESIEKIERSKI A , WANG J , MOHAMED A-H G , et al. A new look at biomedical Ti-based shape memory alloys[J]. Acta Biomaterialia, 2012, 8 (5): 1661- 1669.
doi: 10.1016/j.actbio.2012.01.018
5 NIINOMI M , NAKAI M , HIEDA J . Development of new metallic alloys for biomedical applications[J]. Acta Biomaterialia, 2012, 8 (11): 3888- 3903.
doi: 10.1016/j.actbio.2012.06.037
6 朱康平, 祝建雯, 曲恒磊. 国外生物医用钛合金的发展现状[J]. 稀有金属材料与工程, 2012, 41 (11): 2058- 2063.
6 ZHU K P , ZHU J W , QU H L . Development and application of biomedical Ti alloys abroad[J]. Rare Metal Materials and Engineering, 2012, 41 (11): 2058- 2063.
7 BANERJEE D , WILLIAMS J C . Perspectives on titanium science and technology[J]. Acta Materialia, 2013, 61 (3): 844- 879.
doi: 10.1016/j.actamat.2012.10.043
8 王运锋, 何蕾, 郭薇. 医用钛合金的研究及应用现状[J]. 钛工业进展, 2015, 32 (1): 1- 6.
8 WANG Y F , HE L , GUO W . Research and application of medical titanium alloy[J]. Titanium Industry Progress, 2015, 32 (1): 1- 6.
9 王玉会, 张晖, 张旺峰, 等. TiNbTaZr钛合金冷加工塑性行为研究[J]. 航空材料学报, 2014, 34 (4): 147- 152.
9 WANG Y H , ZHANG H , ZHANG W F , et al. Cold working olastic deformation for TiNbTaZr titanium alloy[J]. Journal of Aeronautical Materials, 2014, 34 (4): 147- 152.
10 XU W , KIM K B , DAS J , et al. Phase stability and its effect on the deformation behavior of Ti-Nb-Ta-In/Cr β alloys[J]. Scripta Materialia, 2006, 54 (11): 1943- 1948.
doi: 10.1016/j.scriptamat.2006.02.002
11 AHMED M , WEXLER D , CASILLAS G , et al. The influence of β phase stability on deformation mode and compressive mechanical properties of Ti-10V-3Fe-3Al alloy[J]. Acta Materialia, 2015, 84, 124- 135.
doi: 10.1016/j.actamat.2014.10.043
12 BLACKBURN M J , FEENEY J A . Stress-induced transformations in Ti-Mo alloys[J]. Journal of the Institute of Metals, 1971, 99 (4): 132- 134.
13 OKA M , TANIGUCHI Y . {332} deformation twins in a Ti-15.5 pct V alloy[J]. Metallurgical and Materials Transactions A, 1979, 10 (5): 651- 653.
doi: 10.1007/BF02658330
14 OKA M , TANIGUCHI Y . Stress-induced products in meta-stable beta Ti-Mo and Ti-V alloys[J]. Journal of the Japan Institute of Metals, 1978, 42, 814- 820.
15 HANADA S , IZUMI O . Transmission electron microscopic observations of mechanical twinning in metastable beta titanium alloys[J]. Metallurgical and Materials Transactions A, 1986, 17 (8): 1409- 1420.
doi: 10.1007/BF02650122
16 TAKEMOTO Y , HIDA M , SAKAKIBARA A . Structural relaxation of interface of {332}〈113〉 twin in β Ti alloy[J]. Journal of the Japan Institute of Metals, 1993, 57, 1471- 1472.
17 TAKEMOTO Y , HIDA M , SAKAKIBARA A . Martensitic {332}〈113〉 twin in β type Ti-Mo alloy[J]. Journal of the Japan Institute of Metals, 1996, 60, 1072- 1078.
18 MANTANI Y , TAKEMOTO Y , HIDA M , et al. Formation or extinction of {332}〈113〉 twin and commensurate ω phase during tensile deformation in Ti-14 mass%Mo alloy[J]. Journal of the Japan Institute of Metals, 2004, 68, 106- 109.
doi: 10.2320/jinstmet.68.106
19 MIN X H , TSUZAKI K , EMURA S , et al. Enhanced uniform elongation by prestraining with deformation twinning in high-strength β-titanium alloys with an isothermal ω-phase[J]. Philosophical Magazine Letters, 2012, 92 (12): 726- 732.
doi: 10.1080/09500839.2012.725949
20 MIN X H , CHEN X J , EMURA S , et al. Mechanism of twinning-induced plasticity in β-type Ti-15Mo alloy[J]. Scripta Materialia, 2013, 69 (5): 393- 396.
doi: 10.1016/j.scriptamat.2013.05.027
21 SUN F , ZHANG J Y , MARTELEUR M , et al. Investigation of early stage deformation mechanisms in a metastable β titanium alloy showing combined twinning-induced plasticity and transformation-induced plasticity effects[J]. Acta Materialia, 2013, 61 (17): 6406- 6417.
doi: 10.1016/j.actamat.2013.07.019
22 PRIMA F , SUN F , VERMAUT P , et al. High performance beta titanium alloys as a new material perspective for cardiovascular applications[J]. Materials Science Forum, 2012, 706-709, 578- 583.
doi: 10.4028/www.scientific.net/MSF.706-709
23 HANADA S , IZUMI O . Deformation characteristics in β phase Ti-Nb alloys[J]. Metallurgical and Materials Transactions A, 1985, 16 (5): 789- 795.
doi: 10.1007/BF02814829
24 MANTANI Y , TAKEMOTO Y , HIDA M , et al. Formation of α"martensite and {332}〈113〉 twin during tensile deformation in Ti-40 mass%Nb alloy[J]. Journal of the Japan Institute of Metals, 2002, 66, 1022- 1029.
25 HANADA S , IZUMI O . Deformation behaviour of retained β phase in β-eutectoid Ti-Cr alloys[J]. Journal of Materials Science, 1986, 21 (12): 4131- 4139.
doi: 10.1007/BF01106518
26 HANADA S , IZUMI O . Correlation of tensile properties, deformation modes, and phase stability in commercial β-phase titanium alloys[J]. Metallurgical and Materials Transactions A, 1987, 18 (2): 265- 271.
doi: 10.1007/BF02825707
27 FURUHARA T , KISHIMOTO K , MAKI T . Transmission electron microscopy of {332}〈113〉 deformation twin in Ti-15V-3Cr-3Sn-3Al alloy[J]. Materials Transactions, 1994, 35 (12): 843- 850.
doi: 10.2320/matertrans1989.35.843
28 WANG X L , LI L , XING H , et al. Role of oxygen in stress-induced ω phase transformation and {332}〈113〉 mechanical twinning in β Ti-20V alloy[J]. Scripta Materialia, 2015, 96, 37- 40.
doi: 10.1016/j.scriptamat.2014.10.018
29 HANADA S , IZUMI O . Deformation of metastable beta Ti-15Mo-5Zr alloy single crystals[J]. Metallurgical and Materials Transactions A, 1980, 11 (8): 1447- 1452.
doi: 10.1007/BF02653501
30 MIN X H , EMURA S , NISHIMURA T , et al. Microstructure, tensile deformation mode and crevice corrosion resistance in Ti-10Mo-xFe alloys[J]. Materials Science and Engineering:A, 2010, 527 (21-22): 5499- 5506.
doi: 10.1016/j.msea.2010.06.016
31 MIN X H , TSUZAKI K , EMURA S , et al. Enhancement of uniform elongation in high strength Ti-Mo based alloys by combination of deformation modes[J]. Materials Science and Engineering:A, 2011, 528 (13-14): 4569- 4578.
doi: 10.1016/j.msea.2011.02.071
32 MIN X H , TSUZAKI K , EMURA S , et al. Heterogeneous twin formation and its effect on tensile properties in Ti-Mo based β titanium alloys[J]. Materials Science and Engineering:A, 2012, 554, 53- 60.
doi: 10.1016/j.msea.2012.06.009
33 MIN X H , TSUZAKI K , EMURA S , et al. {332}〈113〉 twinning system selection in a β-type Ti-15Mo-5Zr polycrystalline alloy[J]. Materials Science and Engineering:A, 2013, 579, 164- 169.
doi: 10.1016/j.msea.2013.04.119
34 SUN F , ZHANG J Y , MARTELEUR M , et al. A new titanium alloy with a combination of high strength, high strain hardening and improved ductility[J]. Scripta Materialia, 2015, 94, 17- 20.
doi: 10.1016/j.scriptamat.2014.09.005
35 KAWABATA T , KAWASAKI A , IZUMI O . Mechanical properties of TiNbTa single crystals at cryogenic temperatures[J]. Acta Materialia, 1998, 46 (8): 2705- 2715.
doi: 10.1016/S1359-6454(97)00475-8
36 YANG Y , LI G P , CHENG G M , et al. Multiple deformation mechanisms of Ti-22.4Nb-0.73Ta-2.0Zr-1.34O alloy[J]. Applied Physics Letters, 2009, 94 (6): 061901- 3.
doi: 10.1063/1.3078521
37 QU L , YANG Y , LU Y F , et al. A detwinning process of {332}〈113〉 twins in beta titanium alloys[J]. Scripta Materialia, 2013, 69 (5): 389- 392.
doi: 10.1016/j.scriptamat.2013.05.028
38 杨义.Gum Metal基钛合金的室温压缩变形机制及热膨胀性能研究[D].沈阳:中国科学院金属研究所, 2009.
38 YANG Y.Study on room-temperature compression deformation mechanisms and thermal expansion property of gum metal-base titanium alloys[D].Shenyang:Institute of Metal Research, Chinese Academy of Sciences, 2009.
39 屈磊.Beta钛合金中{332}〈113〉孪生行为及孪晶在热处理时的演化[D].西安:西安建筑科技大学, 2013.
39 QU L.{332}〈113〉 twinning behavior and evolution of twins during solution treatment in beta titanium alloy[D].Xi'an:Xi'an University of Architecture and Technology, 2013.
40 BERTRAND E , CASTANY P , PERON I , et al. Twinning system selection in a metastable β-titanium alloy by Schmid factor analysis[J]. Scripta Materialia, 2011, 64 (12): 1110- 1113.
doi: 10.1016/j.scriptamat.2011.02.033
41 RUSAKOV G M , LITVINOV V S . Intersection of deformation twins {332}〈11${\rm{\bar 3}}$〉 in β alloys of titanium[J]. The Physics of Metals and Metallography, 2002, 93 (5): 17- 24.
42 CROCKER A G . Twinned martensite[J]. Acta Metallurgica, 1962, 10 (2): 113- 122.
doi: 10.1016/0001-6160(62)90056-1
43 RICHMAN R H . Deformation Twinning[M]. New York: Gordon and Breach, 1964.
44 KIM H Y , IKEHARA Y , KIM J I , et al. Martensitic transformation, shape memory effect and super elasticity of Ti-Nb binary alloys[J]. Acta Materialia, 2006, 54 (9): 2419- 2429.
doi: 10.1016/j.actamat.2006.01.019
45 OBBARD E G , HAO Y L , TALLING R J , et al. The effect of oxygen on α" martensite and super elasticity in Ti-24Nb-4Zr-8Sn[J]. Acta Materialia, 2011, 59 (1): 112- 125.
doi: 10.1016/j.actamat.2010.09.015
46 ZHANG L C , ZHOU T , AINDOW M , et al. Nucleation of stress-induced martensites in a Ti/Mo-based alloy[J]. Journal of Materials Science, 2005, 40 (11): 2833- 2836.
doi: 10.1007/s10853-005-2426-5
47 PALADUGUA M , KENTA D , WANG G , et al. Strengthening of cast Ti-25Nb-3Mo-3Zr-2Sn alloy through precipitation of α in two discrete crystallographic orientations[J]. Materials Science and Engineering:A, 2010, 527 (24-25): 6601- 6606.
doi: 10.1016/j.msea.2010.06.075
48 MIN X H , EMURA S , TSUCHIYA K , et al. Transition of multi-deformation modes in Ti-10Mo alloy with oxygen addition[J]. Materials Science and Engineering:A, 2014, 590 (1): 88- 96.
49 LITVINOV V S , RUSAKOV G M . Twinning on the {332}〈11${\rm{\bar 3}}$〉 system in unstable β titanium alloys[J]. The Physics of Metals and Metallography, 2000, 90, 96- 107.
50 TOBE H , KIM H Y , INAMURA T , et al. Origin of {332} twinning in metastable β-Ti alloys[J]. Acta Materialia, 2014, 64, 345- 355.
doi: 10.1016/j.actamat.2013.10.048
51 BILBY B A , CROCKER A G . The theory of the crystallography of deformation twinning[J]. Proceedings of the Royal Society A, 1965, 288 (1413): 240- 255.
doi: 10.1098/rspa.1965.0216
52 BANUMATHY S , MANDAL R K , SINGH A K . Structure of orthorhombic martensitic phase in binary Ti-Nb alloys[J]. Journal of Applied Physics, 2009, 106 (9): 093518- 6.
doi: 10.1063/1.3255966
[1] 杨宝成, 彭艳, 潘复生, 石宝东. 基于分子动力学镁合金塑性变形机制的研究进展[J]. 材料工程, 2019, 47(8): 40-48.
[2] 闫化锦, 田素贵, 朱新杰, 于慧臣, 舒德龙, 张宝帅. 单晶镍基合金的层错能及其对蠕变机制的影响[J]. 材料工程, 2018, 46(10): 87-95.
[3] 刘臣, 田素贵, 王欣, 吴静, 梁爽. 一种GH4169镍基合金的组织结构与蠕变性能[J]. 材料工程, 2017, 45(6): 43-48.
[4] 刁仲驰, 姚泽坤, 申景园, 刘瑞, 郭鸿镇. TC18钛合金的超塑性行为与变形机制[J]. 材料工程, 2017, 45(5): 80-85.
[5] 张宁, 王耀奇, 侯红亮, 张艳苓, 董晓萌, 李志强. 7B04铝合金超塑性变形行为[J]. 材料工程, 2017, 45(4): 27-33.
[6] 舒德龙, 田素贵, 梁爽, 张宝帅. 一种4.5% Re镍基单晶合金在980℃蠕变期间的变形与损伤机制[J]. 材料工程, 2017, 45(1): 93-100.
[7] 江海涛, 段晓鸽, 蔡正旭, 王丹. 异步轧制AZ31镁合金板材的超塑性工艺及变形机制[J]. 材料工程, 2015, 43(8): 7-12.
[8] 王鸿鼎, 喇培清, 师婷, 魏玉鹏, 卢学峰. 块体纳米晶/微米晶复相金属材料研究现状及其发展趋势[J]. 材料工程, 2013, 0(4): 92-96.
[9] 田素贵, 李振荣, 赵忠刚, 陈礼清, 刘相华. 冷却方式对热连轧GH4169合金组织与蠕变行为的影响[J]. 材料工程, 2012, 0(10): 1-7.
[10] 代永娟, 唐荻, 米振莉, 江海涛, 吕建崇. 锰元素对TWIP钢层错能和变形机制的影响[J]. 材料工程, 2009, 0(7): 39-42.
[11] 李影, 苏彬. 镍基单晶高温合金的反常屈服行为与变形机制[J]. 材料工程, 2004, 0(3): 45-48.
[12] 鲍如强, 黄旭, 黄利军, 曹春晓. Ti-10V-2Fe-3Al合金热变形的研究[J]. 材料工程, 2003, 0(12): 3-6,10.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn