{332} < 113> deformation twinning is a unique deformation mode which can have some special features and a strong influence on the mechanical properties for metastable β-type titanium alloys.{332} < 113> deformation twinning has already got more and more attention.The research situation and observed characteristics for the {332} < 113> deformation twinning are summarized in this paper.Some typical models for the {332} < 113> twinning are reviewed, and their assumptions and remaining problems are presented so as to provide useful information for understanding and revealing the deformation mechanism of {332} < 113> deformation twinning.
NIINOMI M . Mechanical biocompatibilities of titanium alloys for biomedical applications[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2008, 1 (1): 30- 42.
doi: 10.1016/j.jmbbm.2007.07.001
2
GEETHA M , SINGH A K , ASOKAMANI R , et al. Ti based biomaterials, the ultimate choice for orthopaedic implants-a review[J]. Progress in Materials Science, 2009, 54 (3): 397- 425.
doi: 10.1016/j.pmatsci.2008.06.004
LI H M , LEI T , FANG S M , et al. Research progress of biomedical titanium alloys[J]. Metallic Functional Materials, 2011, 18 (2): 70- 73.
4
BIESIEKIERSKI A , WANG J , MOHAMED A-H G , et al. A new look at biomedical Ti-based shape memory alloys[J]. Acta Biomaterialia, 2012, 8 (5): 1661- 1669.
doi: 10.1016/j.actbio.2012.01.018
5
NIINOMI M , NAKAI M , HIEDA J . Development of new metallic alloys for biomedical applications[J]. Acta Biomaterialia, 2012, 8 (11): 3888- 3903.
doi: 10.1016/j.actbio.2012.06.037
ZHU K P , ZHU J W , QU H L . Development and application of biomedical Ti alloys abroad[J]. Rare Metal Materials and Engineering, 2012, 41 (11): 2058- 2063.
7
BANERJEE D , WILLIAMS J C . Perspectives on titanium science and technology[J]. Acta Materialia, 2013, 61 (3): 844- 879.
doi: 10.1016/j.actamat.2012.10.043
WANG Y H , ZHANG H , ZHANG W F , et al. Cold working olastic deformation for TiNbTaZr titanium alloy[J]. Journal of Aeronautical Materials, 2014, 34 (4): 147- 152.
10
XU W , KIM K B , DAS J , et al. Phase stability and its effect on the deformation behavior of Ti-Nb-Ta-In/Cr β alloys[J]. Scripta Materialia, 2006, 54 (11): 1943- 1948.
doi: 10.1016/j.scriptamat.2006.02.002
11
AHMED M , WEXLER D , CASILLAS G , et al. The influence of β phase stability on deformation mode and compressive mechanical properties of Ti-10V-3Fe-3Al alloy[J]. Acta Materialia, 2015, 84, 124- 135.
doi: 10.1016/j.actamat.2014.10.043
12
BLACKBURN M J , FEENEY J A . Stress-induced transformations in Ti-Mo alloys[J]. Journal of the Institute of Metals, 1971, 99 (4): 132- 134.
13
OKA M , TANIGUCHI Y . {332} deformation twins in a Ti-15.5 pct V alloy[J]. Metallurgical and Materials Transactions A, 1979, 10 (5): 651- 653.
doi: 10.1007/BF02658330
14
OKA M , TANIGUCHI Y . Stress-induced products in meta-stable beta Ti-Mo and Ti-V alloys[J]. Journal of the Japan Institute of Metals, 1978, 42, 814- 820.
15
HANADA S , IZUMI O . Transmission electron microscopic observations of mechanical twinning in metastable beta titanium alloys[J]. Metallurgical and Materials Transactions A, 1986, 17 (8): 1409- 1420.
doi: 10.1007/BF02650122
16
TAKEMOTO Y , HIDA M , SAKAKIBARA A . Structural relaxation of interface of {332}〈113〉 twin in β Ti alloy[J]. Journal of the Japan Institute of Metals, 1993, 57, 1471- 1472.
17
TAKEMOTO Y , HIDA M , SAKAKIBARA A . Martensitic {332}〈113〉 twin in β type Ti-Mo alloy[J]. Journal of the Japan Institute of Metals, 1996, 60, 1072- 1078.
18
MANTANI Y , TAKEMOTO Y , HIDA M , et al. Formation or extinction of {332}〈113〉 twin and commensurate ω phase during tensile deformation in Ti-14 mass%Mo alloy[J]. Journal of the Japan Institute of Metals, 2004, 68, 106- 109.
doi: 10.2320/jinstmet.68.106
19
MIN X H , TSUZAKI K , EMURA S , et al. Enhanced uniform elongation by prestraining with deformation twinning in high-strength β-titanium alloys with an isothermal ω-phase[J]. Philosophical Magazine Letters, 2012, 92 (12): 726- 732.
doi: 10.1080/09500839.2012.725949
20
MIN X H , CHEN X J , EMURA S , et al. Mechanism of twinning-induced plasticity in β-type Ti-15Mo alloy[J]. Scripta Materialia, 2013, 69 (5): 393- 396.
doi: 10.1016/j.scriptamat.2013.05.027
21
SUN F , ZHANG J Y , MARTELEUR M , et al. Investigation of early stage deformation mechanisms in a metastable β titanium alloy showing combined twinning-induced plasticity and transformation-induced plasticity effects[J]. Acta Materialia, 2013, 61 (17): 6406- 6417.
doi: 10.1016/j.actamat.2013.07.019
22
PRIMA F , SUN F , VERMAUT P , et al. High performance beta titanium alloys as a new material perspective for cardiovascular applications[J]. Materials Science Forum, 2012, 706-709, 578- 583.
doi: 10.4028/www.scientific.net/MSF.706-709
23
HANADA S , IZUMI O . Deformation characteristics in β phase Ti-Nb alloys[J]. Metallurgical and Materials Transactions A, 1985, 16 (5): 789- 795.
doi: 10.1007/BF02814829
24
MANTANI Y , TAKEMOTO Y , HIDA M , et al. Formation of α"martensite and {332}〈113〉 twin during tensile deformation in Ti-40 mass%Nb alloy[J]. Journal of the Japan Institute of Metals, 2002, 66, 1022- 1029.
25
HANADA S , IZUMI O . Deformation behaviour of retained β phase in β-eutectoid Ti-Cr alloys[J]. Journal of Materials Science, 1986, 21 (12): 4131- 4139.
doi: 10.1007/BF01106518
26
HANADA S , IZUMI O . Correlation of tensile properties, deformation modes, and phase stability in commercial β-phase titanium alloys[J]. Metallurgical and Materials Transactions A, 1987, 18 (2): 265- 271.
doi: 10.1007/BF02825707
27
FURUHARA T , KISHIMOTO K , MAKI T . Transmission electron microscopy of {332}〈113〉 deformation twin in Ti-15V-3Cr-3Sn-3Al alloy[J]. Materials Transactions, 1994, 35 (12): 843- 850.
doi: 10.2320/matertrans1989.35.843
28
WANG X L , LI L , XING H , et al. Role of oxygen in stress-induced ω phase transformation and {332}〈113〉 mechanical twinning in β Ti-20V alloy[J]. Scripta Materialia, 2015, 96, 37- 40.
doi: 10.1016/j.scriptamat.2014.10.018
29
HANADA S , IZUMI O . Deformation of metastable beta Ti-15Mo-5Zr alloy single crystals[J]. Metallurgical and Materials Transactions A, 1980, 11 (8): 1447- 1452.
doi: 10.1007/BF02653501
30
MIN X H , EMURA S , NISHIMURA T , et al. Microstructure, tensile deformation mode and crevice corrosion resistance in Ti-10Mo-xFe alloys[J]. Materials Science and Engineering:A, 2010, 527 (21-22): 5499- 5506.
doi: 10.1016/j.msea.2010.06.016
31
MIN X H , TSUZAKI K , EMURA S , et al. Enhancement of uniform elongation in high strength Ti-Mo based alloys by combination of deformation modes[J]. Materials Science and Engineering:A, 2011, 528 (13-14): 4569- 4578.
doi: 10.1016/j.msea.2011.02.071
32
MIN X H , TSUZAKI K , EMURA S , et al. Heterogeneous twin formation and its effect on tensile properties in Ti-Mo based β titanium alloys[J]. Materials Science and Engineering:A, 2012, 554, 53- 60.
doi: 10.1016/j.msea.2012.06.009
33
MIN X H , TSUZAKI K , EMURA S , et al. {332}〈113〉 twinning system selection in a β-type Ti-15Mo-5Zr polycrystalline alloy[J]. Materials Science and Engineering:A, 2013, 579, 164- 169.
doi: 10.1016/j.msea.2013.04.119
34
SUN F , ZHANG J Y , MARTELEUR M , et al. A new titanium alloy with a combination of high strength, high strain hardening and improved ductility[J]. Scripta Materialia, 2015, 94, 17- 20.
doi: 10.1016/j.scriptamat.2014.09.005
35
KAWABATA T , KAWASAKI A , IZUMI O . Mechanical properties of TiNbTa single crystals at cryogenic temperatures[J]. Acta Materialia, 1998, 46 (8): 2705- 2715.
doi: 10.1016/S1359-6454(97)00475-8
36
YANG Y , LI G P , CHENG G M , et al. Multiple deformation mechanisms of Ti-22.4Nb-0.73Ta-2.0Zr-1.34O alloy[J]. Applied Physics Letters, 2009, 94 (6): 061901- 3.
doi: 10.1063/1.3078521
37
QU L , YANG Y , LU Y F , et al. A detwinning process of {332}〈113〉 twins in beta titanium alloys[J]. Scripta Materialia, 2013, 69 (5): 389- 392.
doi: 10.1016/j.scriptamat.2013.05.028
YANG Y.Study on room-temperature compression deformation mechanisms and thermal expansion property of gum metal-base titanium alloys[D].Shenyang:Institute of Metal Research, Chinese Academy of Sciences, 2009.
QU L.{332}〈113〉 twinning behavior and evolution of twins during solution treatment in beta titanium alloy[D].Xi'an:Xi'an University of Architecture and Technology, 2013.
40
BERTRAND E , CASTANY P , PERON I , et al. Twinning system selection in a metastable β-titanium alloy by Schmid factor analysis[J]. Scripta Materialia, 2011, 64 (12): 1110- 1113.
doi: 10.1016/j.scriptamat.2011.02.033
41
RUSAKOV G M , LITVINOV V S . Intersection of deformation twins {332}〈11${\rm{\bar 3}}$〉 in β alloys of titanium[J]. The Physics of Metals and Metallography, 2002, 93 (5): 17- 24.
42
CROCKER A G . Twinned martensite[J]. Acta Metallurgica, 1962, 10 (2): 113- 122.
doi: 10.1016/0001-6160(62)90056-1
43
RICHMAN R H . Deformation Twinning[M]. New York: Gordon and Breach, 1964.
44
KIM H Y , IKEHARA Y , KIM J I , et al. Martensitic transformation, shape memory effect and super elasticity of Ti-Nb binary alloys[J]. Acta Materialia, 2006, 54 (9): 2419- 2429.
doi: 10.1016/j.actamat.2006.01.019
45
OBBARD E G , HAO Y L , TALLING R J , et al. The effect of oxygen on α" martensite and super elasticity in Ti-24Nb-4Zr-8Sn[J]. Acta Materialia, 2011, 59 (1): 112- 125.
doi: 10.1016/j.actamat.2010.09.015
46
ZHANG L C , ZHOU T , AINDOW M , et al. Nucleation of stress-induced martensites in a Ti/Mo-based alloy[J]. Journal of Materials Science, 2005, 40 (11): 2833- 2836.
doi: 10.1007/s10853-005-2426-5
47
PALADUGUA M , KENTA D , WANG G , et al. Strengthening of cast Ti-25Nb-3Mo-3Zr-2Sn alloy through precipitation of α in two discrete crystallographic orientations[J]. Materials Science and Engineering:A, 2010, 527 (24-25): 6601- 6606.
doi: 10.1016/j.msea.2010.06.075
48
MIN X H , EMURA S , TSUCHIYA K , et al. Transition of multi-deformation modes in Ti-10Mo alloy with oxygen addition[J]. Materials Science and Engineering:A, 2014, 590 (1): 88- 96.
49
LITVINOV V S , RUSAKOV G M . Twinning on the {332}〈11${\rm{\bar 3}}$〉 system in unstable β titanium alloys[J]. The Physics of Metals and Metallography, 2000, 90, 96- 107.
50
TOBE H , KIM H Y , INAMURA T , et al. Origin of {332} twinning in metastable β-Ti alloys[J]. Acta Materialia, 2014, 64, 345- 355.
doi: 10.1016/j.actamat.2013.10.048
51
BILBY B A , CROCKER A G . The theory of the crystallography of deformation twinning[J]. Proceedings of the Royal Society A, 1965, 288 (1413): 240- 255.
doi: 10.1098/rspa.1965.0216
52
BANUMATHY S , MANDAL R K , SINGH A K . Structure of orthorhombic martensitic phase in binary Ti-Nb alloys[J]. Journal of Applied Physics, 2009, 106 (9): 093518- 6.
doi: 10.1063/1.3255966