Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (2): 105-114    DOI: 10.11868/j.issn.1001-4381.2015.000724
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
高Cl-环境对M152和17-4PH高强钢应力腐蚀开裂行为的影响
吴伟1, 郝文魁1,2, 李晓刚1,3, 钟平4, 董超芳1, 刘智勇1, 肖葵1
1. 北京科技大学 腐蚀与防护中心, 北京 100083;
2. 国家电网智能电网 研究院, 北京 102200;
3. 中国科学院 宁波材料技术与工程研究所, 浙江 宁波 315201;
4. 中国航发北京航空材料研究院, 北京 100095
Effect of High Cl- Environment on Stress Corrosion Cracking Behavior of M152 and 17-4PH High-strength Steels
WU Wei1, HAO Wen-kui1,2, LI Xiao-gang1,3, ZHONG Ping4, DONG Chao-fang1, LIU Zhi-yong1, XIAO Kui1
1. Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083, China;
2. State Grid Smart Grid Research Institute, Beijing 102200, China;
3. Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang, China;
4. AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
全文: PDF(12570 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 利用中性盐雾实验、慢应变速率拉伸实验研究M152和17-4PH高强钢在高Cl-环境中的应力腐蚀行为和机理。结果表明:M152和17-4PH钢在高Cl-环境中均有一定的应力腐蚀开裂(SCC)敏感性,且随着前期中性盐雾时间的延长,其伸长率逐渐降低,SCC敏感性逐渐升高;通过扫描电子显微镜对试样的断口和侧边裂纹进行观察比较发现,中性盐雾时间的延长会使M152和17-4PH高强钢的断裂机制由韧性断裂向脆性断裂转变。分析得出M152和17-4PH钢在高Cl-环境中发生SCC是阳极溶解(AD)和氢脆(HE)的协同作用,Cl-会加速AD过程。经过不同时间中性盐雾后17-4PH钢的SCC敏感性均比M152钢要高,HE作用也越明显。高Cl-环境中,17-4PH高强钢相对M152钢更易发生SCC。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴伟
郝文魁
李晓刚
钟平
董超芳
刘智勇
肖葵
关键词 高强钢慢应变速率拉伸高Cl-环境应力腐蚀开裂    
Abstract:The stress corrosion cracking (SCC) behavior and mechanism of M152 and 17-4PH high-strength steels in high Cl- environment were studied through neutral salt spray test and slow strain rate tensile (SSRT) test. The result shows that M152 and 17-4PH steels exhibit a certain sensitivity to SCC in Cl- environment, elongations of them both decrease with the increasing time of early neutral salt spray test, and the SCC sensitivity gradually increases. Comparing the fracture morphology with lateral crack through SEM, it can be found that the fracture mechanism of M152 and 17-4PH high-strength steels converts ductile fracture to brittle fracture as the extension of neutral salt spray test time. The synergistic effect of anodic dissolution (AD) and hydrogen embrittlement (HE) result in the occurrence of SCC in high Cl- environment, and Cl- can promote the AD process. Due to the obvious effect of HE, 17-4PH steel has higher SCC sensitivity than M152 steel with the same time of early neutral salt spray test. 17-4PH high-strength steel is more prone to SCC than M152 in high Cl- environment.
Key wordshigh-strength steel    SSRT    high Cl- environment    SCC
收稿日期: 2015-06-08      出版日期: 2018-02-01
中图分类号:  TG172.5  
通讯作者: 肖葵(1968-),男,博士,副教授,主要研究金属材料大气腐蚀,联系地址:北京市海淀区学院路30号北京科技大学腐蚀与防护中心(100083),xiaokui@sina.com     E-mail: xiaokui@sina.com
引用本文:   
吴伟, 郝文魁, 李晓刚, 钟平, 董超芳, 刘智勇, 肖葵. 高Cl-环境对M152和17-4PH高强钢应力腐蚀开裂行为的影响[J]. 材料工程, 2018, 46(2): 105-114.
WU Wei, HAO Wen-kui, LI Xiao-gang, ZHONG Ping, DONG Chao-fang, LIU Zhi-yong, XIAO Kui. Effect of High Cl- Environment on Stress Corrosion Cracking Behavior of M152 and 17-4PH High-strength Steels. Journal of Materials Engineering, 2018, 46(2): 105-114.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.000724      或      http://jme.biam.ac.cn/CN/Y2018/V46/I2/105
[1] 周士猛,程兴旺,张由景,等. 新型超高强度钢的高温形变热处理[J].材料工程,2016, 44(5):37-41. ZHOU S M, CHENG X W, ZHANG Y J, et al. High temperature thermo-mechanical treatment of novel ultra-high-strength steel[J]. Journal of Materials Engineering, 2016, 44(5):37-41.
[2] 杨晓. 17-4PH不锈钢性能和组织研究[D]. 哈尔滨:哈尔滨工程大学,2007. YANG X. The properties and microstructures of 17-4PH stainless steel[D]. Harbin:Harbin Engineering University, 2007.
[3] TAVARES S S M, Da SILVA F J, SCANDIAN C, et al. Microstructure and intergranular corrosion resistance of UNS S17400(17-4PH) stainless steel[J]. Corrosion Science, 2010, 52(11):3835-3839.
[4] LIU Z Y, ZHAI G L, LI X G, et al. Effect of deteriorated microstructures on stress corrosion cracking of X70 pipeline steel in acidic soil environment[J]. Journal of University of Science and Technology Beijing, 2008, 15(6):707-713.
[5] LIU Z Y, DU C W, ZHANG X, et al. Effect of pH value on stress corrosion cracking of X70 pipeline steel in acidic soil environment[J]. Acta Metallurgica Sinica (English Letters), 2013, 26(4):489-496.
[6] 郝文魁,刘智勇,马岩,等.不同pH的碱性环境中16Mn钢及热影响区应力腐蚀行为[J].材料工程,2015,43(3):28-34. HAO W K,LIU Z Y,MA Y,et al. Stress corrosion cracking behavior of 16Mn steel and heat-affected zone in alkaline sulfide with different pH value[J]. Journal of Materials Engineering, 2015,43(3):28-34.
[7] SPENCER D T, EDWARDS M R, WENMAN M R, et al. The initiation and propagation of chloride-induced transgranular stress-corrosion cracking (TGSCC) of 304L austenitic stainless steel under atmospheric conditions[J]. Corrosion Science, 2014,88:76-88.
[8] 姚小飞,谢发勤,吴向清,等.Cl-浓度对超级13Cr油管钢应力腐蚀开裂行为的影响[J].材料导报B:研究篇,2012, 26(9):38-45. YAO X F, XIE F Q, WU X Q, et al. Effects of Cl- concentration on stress corrosion cracking behaviors of super 13Cr tubing steels[J]. Materials Review B:Research, 2012, 26(9):38-45.
[9] 李岩,方可伟,刘飞华.Cl-对304L不锈钢从点蚀到应力腐蚀转变行为的影响[J].腐蚀与防护,2012,33(11):955-959. LI Y, FANG K W, LIU F H. Influence of Cl- on development behavior from pitting corrosion to stress corrosion cracking of 304L stainless steel[J].Corrosion and Protection, 2012,33(11):955-959.
[10] ZHAO W M, XIN R F, HE Z Y, et al. Contribution of anodic dissolution to the corrosion fatigue crack propagation of X80 steel in 3.5 wt% NaCl solution[J]. Corrosion Science, 2012,63:387-392.
[11] ZIAEI S M R, MOSTOWFI J, GOLESTANI P M, et al. Failure analysis:chloride stress corrosion cracking of AISI 316 stainless steel downhole pressure memory gauge cover[J]. Engineering Failure Analysis, 2013,33:465-472.
[12] 李平,蔡启舟,魏伯康,等.时效处理温度对17-4PH铸造不锈钢在稀硫酸料浆中的冲刷腐蚀性能影响[J].摩擦学学报, 2006, 26(4):341-347. LI P, CAI Q Z, WEI B K,et al. Effect of aging temperature on erosion-corrosion of 17-4PH casting stainless steels in dilute sulfuric acid slurry[J]. Tribology, 2006, 26(4):341-347.
[13] 杨钢,郭永华,刘新权,等.595℃长期时效对M152马氏体耐热钢力学性能的影响[J].钢铁, 2010,45(7):66-70. YANG G, GUO Y H, LIU X Q, et al. Effect of long-term aging at 595℃ on mechanical properties of M152 martensitic heat resistant steel[J]. Iron and Steel, 2010,45(7):66-70.
[14] 邓德伟,陈蕊,田鑫,等. 热处理对17-4PH马氏体不锈钢显微组织及性能的影响[J].金属热处理, 2013, 38(4):32-38. DENG D W, CHEN R, TIAN X, et al. Influence of heat treatment on microstructure and properties of 17-4PH martensitic stainless steel[J]. Heat Treatment of Metals,2013,38(4):32-38.
[15] 杨钢, 刘新权, 杨沐鑫,等.1Cr12Ni3Mo2VN(M152)耐热钢的脆化机制[J].特钢技术, 2009, 15(61):14-24. YANG G,LIU X Q,YANG M X,et al. Research on brittleness of heat resistant steel 1Cr12Ni3Mo2VN (M152)[J]. Special Steel Technology, 2009, 15(61):14-24.
[16] LIU R L, YAN M F. Improvement of wear and corrosion resistances of 17-4PH stainless steel by plasma nitrocarburizing[J]. Materials & Design, 2010, 31(5):2355-2359.
[17] LI G J, WANG J, LI C,et al. Microstructure and dry-sliding wear properties of DC plasma nitrided 17-4PH stainless steel[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2008, 266(9):1964-1970.
[18] SMANIO V, KITTEL J, FREGONESE M, et al. Acoustic emission monitoring of wet H2S cracking of line pipe steels:application to hydrogen-induced cracking and stress-oriented hydrogen-induced cracking[J]. Corrosion, 2011, 67(6):065002-1-065002-12.
[19] 郝文魁,刘智勇,杜翠薇,等. 35CrMo钢在酸性H2S环境中的应力腐蚀行为与机理[J].机械工程学报,2014,50(4):39-46. HAO W K, LIU Z Y, DU C W, et al. Stress corrosion cracking behavior of 35CrMo steel in acidic hydrogen sulfide solutions[J]. Journal of Mechanical Engineering, 2014, 50(4):39-46.
[20] CHOI Y S, KIM J G. Aqueous corrosion behavior of weathering steel and carbon steel in acid-chloride environments[J]. Corrosion, 2000, 56(12):1202-1210.
[21] LIU J C, PARK S W, NAGAO S, et al. The role of Zn precipitates and Cl- anions in pitting corrosion of Sn-Zn solder alloys[J]. Corrosion Science, 2015, 92:263-271.
[22] FRANKEL G S, SRIDHAR N. Understanding localized corrosion[J]. Materials Today, 2008, 11(10):38-44.
[23] ZHU L K, YAN Y, QIAO L J, et al. Stainless steel pitting and early-stage stress corrosion cracking under ultra-low elastic load[J]. Corrosion Science, 2013,77:360-368.
[24] RANMAMURTHY S,ATRENS A. The stress corrosion cracking of as-quenched 4340 and 3.5NiCrMoV steels under stress rate control in distilled water at 90℃[J]. Corrosion Science, 1993, 34(9):1385-1402.
[25] RANMAMURTHY S, ATRENS A. The influence of applied stress rate on the stress corrosion cracking of 4340 and 3.5NiCrMoV steels in distilled water at 30℃[J]. Corrosion Science, 2010, 52(3):1042-1051.
[26] LATANISION R M, OPPERHAUSER H. The intergranular embrittlement of nickel by hydrogen:the effect of grain boundary segregation[J]. Metallurgical and Materials Transactions B, 1974, 5(2):483-492.
[27] ROBERTSON I M, BIMNBAUM H K. An HVEM study of hydrogen effects on the deformation and fracture of nickel[J]. Acta Metallurgica, 1986, 34(3):353-366.
[28] 刘然克,张德平,郝文魁,等.H2S分压对N80油套管钢CO2环境下应力腐蚀开裂的影响[J].四川大学学报(工程科学版),2013,45(6):196-202. LIU R K, ZHANG D P, HAO W K, et al. Effect of H2S partial pressure on stress corrosion cracking behavior of N80 oil casing steel in the environment of CO2[J]. Journal of Sichuan University (Engineering Science Edition), 2013, 45(6):196-202.
[29] 李松梅,吴凌飞,刘建华,等. 应力比和腐蚀环境对超高强度钢AerMet100疲劳裂纹扩展的影响[J]. 航空材料学报,2014,34(3):74-80. LI S M, WU L F, LIU J H, et al. Effect of load ratio and corrosion on fatigue behavior of AerMet100 ultrahigh strength steel[J]. Journal of Aeronautical Materials,2014,34(3):74-80.
[30] JONES R H. Stress-corrosion cracking:materials performance and evaluation[M]. Ohio:ASM International, 1992.
[1] 贺星, 孔德军, 宋仁国. 激光熔覆Al-Ni-TiC-CeO2复合涂层的组织与耐腐蚀磨损性能[J]. 材料工程, 2019, 47(10): 68-75.
[2] 杜娟, 田辉, 陈亚军, 王付胜, 陈翘楚, 褚弘. 7A04铝合金应力腐蚀敏感性及裂纹萌生与扩展行为[J]. 材料工程, 2018, 46(4): 74-81.
[3] 田文扬, 刘奋, 韦春华, 夏卫生, 杨云珍. DP980高强钢动态拉伸力学行为[J]. 材料工程, 2017, 45(3): 47-53.
[4] 邢淑清, 陆恒昌, 麻永林, 韩娜, 李振团, 陈重毅. 800MPa级高强钢焊接粗晶区再热循环的组织转变规律[J]. 材料工程, 2015, 43(7): 93-99.
[5] 章淑芳, 王晓敏, 陈辉, 廖潇垚. 7003铝合金动车柜体的应力腐蚀开裂[J]. 材料工程, 2015, 43(7): 105-112.
[6] 郝文魁, 刘智勇, 马岩, 杜翠薇, 李晓刚, 胡山山. 不同pH的碱性环境中16Mn钢及热影响区应力腐蚀行为[J]. 材料工程, 2015, 43(3): 28-34.
[7] 杨东平, 胥聪敏, 罗金恒, 王珂, 李辉辉. 0.8设计系数用X80管线钢在近中性pH溶液中的应力腐蚀开裂行为[J]. 材料工程, 2015, 43(1): 89-95.
[8] 程远, 俞宏英, 王莹, 孙冬柏. 外加电位对X80钢在玉门土壤模拟溶液中应力腐蚀的影响[J]. 材料工程, 2014, 0(8): 55-60.
[9] 刘瑛, 张品芳, 陈兰君, 张合, 张新明, 耿占吉. 预析出对2519A铝合金局部腐蚀性能的影响[J]. 材料工程, 2014, 0(6): 11-17.
[10] 陈雨来, 董长征, 蔡庆伍, 万德成, 李亮, 齐越. Mo和Ni对高强无碳化物贝氏体钢组织转变与力学性能的影响[J]. 材料工程, 2013, 0(9): 16-21.
[11] 程远, 俞宏英, 王莹, 孟旭, 孙冬柏. 应变速率对X80管线钢应力腐蚀的影响[J]. 材料工程, 2013, 0(3): 77-82.
[12] 张晓云, 梅克力, 熊文华, 郭孟秋, 高健. 7A52铝合金焊接件应力腐蚀性能评价[J]. 材料工程, 2013, 0(10): 86-92,97.
[13] 刘亚娟, 吕祥鸿, 赵国仙, 陈长风, 薛艳. 超级13Cr马氏体不锈钢在入井流体与产出流体环境中的腐蚀行为研究[J]. 材料工程, 2012, 0(10): 17-21,47.
[14] 于美, 董宇, 王瑞阳, 祁晋豫, 刘建华, 李松梅. 23Co14Ni12Cr3Mo超高强钢在模拟海水环境中的腐蚀行为[J]. 材料工程, 2012, 0(1): 42-50.
[15] 刘建华, 郝雪龙, 李松梅, 于美. 基于灰色理论的高强铝合金应力腐蚀开裂预测模型的建立与应用[J]. 材料工程, 2011, 0(3): 60-64.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn