Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (2): 66-72    DOI: 10.11868/j.issn.1001-4381.2015.001513
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
疏水植物表面微纳复合结构电铸模芯的制备
黎醒1,2, 蒋炳炎1,2, 吕辉1,2, 周明勇1,2, 翁灿1,2
1. 中南大学 高性能复杂制造国家重点实验室, 长沙 410083;
2. 中南大学 机电工程学院, 长沙 410083
Fabrication of Electroformed Mold Inserts with Micro-nano Structures from Hydrophobic Plant Surfaces
LI Xing1,2, JIANG Bing-yan1,2, LYU Hui1,2, ZHOU Ming-yong1,2, WENG Can1,2
1. State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China;
2. College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
全文: PDF(3481 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 以竹叶下表面为疏水生物母板,针对疏水表面电铸成型的特殊性,分别采取湿润剂浸润处理和阴极水平旋转运动两个技术手段改善微纳复合结构的电铸成型质量。结果表明:浸润处理可有效提高沉积离子在微纳米凹槽内部的沉积,阴极水平旋转对提高电铸镍模芯宏观质量和微观结构复制质量均有一定效果。采用浸润处理与阴极旋转相结合的电铸复制工艺,可明显提高竹叶下表面微纳复合结构的复制质量,成功实现具有疏水植物表面微纳复合结构的模塑成型镍模芯的高质量制备。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黎醒
蒋炳炎
吕辉
周明勇
翁灿
关键词 电铸疏水微纳复合结构表面形貌    
Abstract:The lower surface of bamboo leaves was adopted as a hydrophobic surface master. Regarding the characteristics of electroforming for hydrophobic surfaces, a wet-out treatment and a cathode horizontal-rotation were adopted to improve the replication quality of micro-nano hierarchical structures. The results show that the wet-out treatment can effectively improve the nickel ion deposition in the micro-nano cavities. The cathode horizontal-rotation is proved to be helpful for the better macro-and micro-qualities of electroformed nickel mold inserts. Electroforming technology with the wet-out treatment and the cathode horizontal-rotation can significantly improve the replication quality of micro-nano hierarchical structures of bamboo leaf surfaces, and can be used to successfully fabricate the hydrophobic nickel mold inserts with high quality for further molding.
Key wordselectroforming    hydrophobic    micro-nano hierarchical structure    surface morphology
收稿日期: 2015-12-12      出版日期: 2018-02-01
中图分类号:  TQ153.4  
通讯作者: 翁灿(1982-),女,博士,副教授,主要从事高分子材料注射成型加工与模拟研究,联系地址:湖南省长沙市中南大学新校区中铝科技大楼(410083),canweng@csu.edu.cn     E-mail: canweng@csu.edu.cn
引用本文:   
黎醒, 蒋炳炎, 吕辉, 周明勇, 翁灿. 疏水植物表面微纳复合结构电铸模芯的制备[J]. 材料工程, 2018, 46(2): 66-72.
LI Xing, JIANG Bing-yan, LYU Hui, ZHOU Ming-yong, WENG Can. Fabrication of Electroformed Mold Inserts with Micro-nano Structures from Hydrophobic Plant Surfaces. Journal of Materials Engineering, 2018, 46(2): 66-72.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.001513      或      http://jme.biam.ac.cn/CN/Y2018/V46/I2/66
[1] 杨周.仿生超疏水功能表面的制备及其性能研究[D]. 合肥:中国科学技术大学, 2012. YANG Z. Preparation and properties of artificial bionic superhydrophobic functional surfaces[D]. Hefei:University of Science and Technology of China, 2012.
[2] ZHANG X, SHI F, NIU J, et al. Superhydrophobic surfaces:from structural control to functional application[J]. Journal of Materials Chemistry, 2008, 18(6):621-633.
[3] PARK Y M, GANG M, SEO Y H, et al. Artificial petal surface based on hierarchical micro-and nanostructures[J]. Thin Solid Films, 2011, 520(1):362-367.
[4] BARTHLOTT W, NEINHUIS C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta, 1997, 202(1):1-8.
[5] NEINHUIS C, BARTHLOTT W. Characterization and distribution of water-repellent, self-cleaning plant surfaces[J]. Annals of Botany, 1997, 79(6):667-677.
[6] OTTEN A, HERMINGHAUS S. How plants keep dry:a physicist's point of view[J]. Langmuir, 2004, 20(6):2405-2408.
[7] HIGGINS A M, JONES R A L. Anisotropic spinodal dewetting as a route to self-assembly of patterned surfaces[J]. Nature, 2000, 404(6777):476-478.
[8] ONDA T, SHIBUICHI S, SATOH N, et al. Super water-repellent surfaces resulting from fractal structure[J]. Langmuir, 1996, 12(9):2125-2127.
[9] SUN M H, LUO C X, XU L P, et al. Artificial lotus leaf by nanocasting[J]. Langmuir, 2005, 21(19):8978-8981.
[10] ZHANG L, ZHOU Z L, CHENG B, et al. Superhydrophobic behavior of a perfluoropolyether lotus-leaf-like topography[J]. Langmuir, 2006, 22(20):8576-8580.
[11] PENG P P, KE Q P, ZHOU G, et al. Fabrication of microcavity-array superhydrophobic surfaces using an improved template method[J]. Journal of Colloid and Interface Science, 2013, 395(2):326-328.
[12] 翁灿, 周宏慧, 王飞, 等. 高聚物超疏水表面制备技术研究进展[J]. 工程塑料应用, 2014, 42(6):122-125. WENG C, ZHOU H H, WANG F, et al. Research progress in preparation technologies for polymer superhydrophobic surfaces[J]. Engineering Plastics Application, 2014, 42(6):122-125.
[13] 徐文骥, 宋金龙, 孙晶, 等. 金属基体超疏水表面制备及应用的研究进展[J]. 材料工程, 2011(5):93-98. XU W J, SONG J L, SUN J, et al. Progress in fabrication and application of superhydrophobic surfaces on metal substrates[J]. Journal of Materials Engineering,2011(5):93-98.
[14] 李晶, 赵言辉, 于化东,等. 电刷镀-激光加工法制备耦合结构及复合特性研究[J]. 材料工程, 2016, 44(12):28-34. LI J, ZHAO Y H, YU H D, et al. Fabrication of coupling structure and composite properties by electro-brush plating and laser processing[J]. Journal of Materials Engineering, 2016, 44(12):28-34.
[15] McGEOUGH J A, LEU M C, RAJURKAR K P, et al. Electroforming process and application to micro/macro manufacturing[J]. CIRP Annals-Manufacturing Technology, 2001, 50(2):499-514.
[16] 钱建刚, 李彭瑞, 李海婷. 溶液组分对电铸镍组织和力学性能的影响[J]. 航空材料学报, 2014, 34(2):11-16. QIAN J G, LI P R, LI H T. Influence of bath composition on microstructure and mechanical properties of electroformed nickel[J]. Journal of Aeronautical Materials, 2014, 34(2):11-16.
[17] 王泽, 周明, 谈衡, 等. 电铸法复制疏水植物表面微结构的方法[J]. 电镀与精饰, 2012, 34(11):6-8. WANG Z, ZHOU M, TAN H, et al. The method of duplicating surface micro-structures of hydrophobic plants based on electroforming processes[J]. Plating and Finishing, 2012, 34(11):6-8.
[18] 马鑫.微透镜阵列模芯的电铸厚度均匀性研究[D]. 长沙:中南大学, 2013. MA X. Research on thickness uniformity of micro lensarray mold insert fabricated by electroforming[D]. Changsha:Central South University, 2013.
[19] CASSIE A B D,BAXTER S. Wettability of porous surfaces[J].Transactions of the Faraday Society,1944,40:546-551.
[1] 李为民, 彭超义, 杨金水, 邢素丽. PTFE/epoxy全有机超疏水涂层制备[J]. 材料工程, 2020, 48(7): 162-169.
[2] 王霞, 王辉, 侯丽, 蒋欢, 周雯洁. 超疏水防腐蚀涂层的研究进展[J]. 材料工程, 2020, 48(6): 73-81.
[3] 侯根良, 李浩, 毕松, 苏正安, 刘朝辉, 林阳阳, 汤进. 基于不同粒径SiO2的疏水薄膜制备及其性能[J]. 材料工程, 2020, 48(2): 32-37.
[4] 何照荣, 揭晓华, 连玮琦. 电火花加工制备铜基微纳层次结构及其疏水性能[J]. 材料工程, 2020, 48(1): 144-149.
[5] 张志斌, 尉小凤, 王海涛, 史雪婷, 冯利邦. 金属基超疏水表面的制备及性能研究进展[J]. 材料工程, 2019, 47(5): 26-33.
[6] 占彦龙, 李文, 李宏, 胡良云. 氧化还原法制备超疏水表面及其防覆冰性能[J]. 材料工程, 2019, 47(1): 58-63.
[7] 万闪, 姜丹, 蔡光义, 廖圣智, 董泽华. 铝合金超疏水转化膜的制备与性能[J]. 材料工程, 2018, 46(9): 144-151.
[8] 罗晓民, 魏梦媛, 曹敏. 耐腐蚀超疏水铜网的制备及其在油水分离中的应用[J]. 材料工程, 2018, 46(5): 92-98.
[9] 李晶, 赵世才, 杜锋, 范凤玉, 潘理达, 于化东. 激光构筑槽棱与网格状结构超疏水耐腐蚀表面研究[J]. 材料工程, 2018, 46(5): 86-91.
[10] 汤超, 陈花玲, 李博, 刘学婧. 软材料表面形貌调控与应用研究进展[J]. 材料工程, 2018, 46(3): 131-141.
[11] 刘洪丽, 邓青沂, 褚鹏. 超临界干燥制备PSNB气凝胶及其超疏水性能研究[J]. 材料工程, 2018, 46(2): 22-26.
[12] 刘用, 马胜国, 刘英杰, 张腾, 杨慧君. AlxCrCuFeNi2多主元高熵合金的摩擦磨损性能[J]. 材料工程, 2018, 46(2): 99-104.
[13] 谭娜, 邢志国, 王海斗, 王晓丽, 金国, 徐滨士. 基于仿生原理的几何构型及其功能性的研究进展[J]. 材料工程, 2018, 46(1): 133-140.
[14] 陈宏霞, 马福民, 黄林滨. 超浸润性金属丝网的制备及工艺优化[J]. 材料工程, 2017, 45(9): 59-65.
[15] 蒋晓, 郭瑞光, 唐长斌. 硬脂酸改性镁合金铈钒转化膜的制备与性能[J]. 材料工程, 2017, 45(5): 13-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn